
Scalable Bias-Resistant Distributed Randomness

Ewa Syta*, Philipp Jovanovic†, Eleftherios Kokoris Kogias†, Nicolas Gailly†,
Linus Gasser†, Ismail Khoffi‡, Michael J. Fischer§, Bryan Ford†

IEEE Security & Privacy
May 23, 2017

*Trinity College, USA
†EPFL, Switzerland
‡University of Bonn, Germany
§Yale University, USA

Talk Outline
• Motivation

‣ The need for public randomness
‣ Strawman examples: Towards unbiasable randomness

• Two Randomness Protocols
‣ RandHound
‣ RandHerd

• Implementation and Experimental Results

• Conclusions and Demo

2

Talk Outline
• Motivation

‣ The need for public randomness
‣ Strawman examples: Towards unbiasable randomness

• Two Randomness Protocols
‣ RandHound
‣ RandHerd

• Implementation and Experimental Results

• Conclusions and Demo

3

Public Randomness
• Collectively used

• Unpredictable ahead of time

• Not secret past a certain point in time

• Applications
‣ Random selection: lotteries, sweepstakes, jury selection, voting and election audits
‣ Games: shuffled decks, team assignments
‣ Protocols: parameters, IVs, nonces, sharding
‣ Crypto: challenges for NZKP, authentication protocols, cut-and-choose methods,

“nothing up my sleeves” numbers

4

Failed / Rigged Randomness

5

Vietnam War Lotteries (1969)

Public Randomness is not New

• 1955: Large table of random
numbers published as a book by the
Rand Corporation

• Today: Generating public random
numbers is (still) hard

• Main issues: trust and scale

6

Goals
1. Availability

Successful protocol
termination for up to

f=t-1 malicious nodes.

7

2. Unpredictability
Output not revealed

prematurely.
3. Unbiasability

Output distributed
uniformly at random.

4. Verifiability
Output correctness
can be checked by

third parties.

5. Scalability
Executable with

hundreds of
participants.Decentralized,

public randomness
in the (t,n)-threshold

security model

Assumptions: n= 3f +1, Byzantine adversary and asynchronous network with eventual message delivery

Public Randomness Approaches
• With Trusted Third Party
‣ NIST Randomness Beacon 

• Without TTP
Unusual assumptions
‣ Bitcoin (Bonneau, 2015)
‣ Slow cryptographic hash functions (Lenstra, 2015)
‣ Lotteries (Baigneres, 2015)
‣ Financial data (Clark, 2010)

(t,n)-threshold security model but not scalable
‣ Coin-flipping (Cachin, 2015)
‣ Distributed key generation (Kate, 2009)

8

Public Randomness is Hard

Strawman I
• Idea: Combine random

inputs of all participants.
• Problem: Last node

controls output.
9

Strawman II
• Idea: Commit-then-reveal

random inputs.
• Problem: Dishonest nodes

can choose not to reveal.

Strawman III
• Idea: Secret-share random

inputs.
• Problem: Dishonest nodes

can send bad shares.

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

Public Randomness is Hard

10

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandShare
• Idea: Strawman III + verifiable secret sharing (Feldman, 1987)
• Problems:

‣ Not publicly verifiable
‣ Not scalable: O(n3) communication / computation complexity

Talk Outline
• Motivation

‣ The need for public randomness
‣ Strawman examples: Towards unbiasable randomness

• Two Randomness Protocols
‣ RandHound
‣ RandHerd

• Implementation and Experimental Results

• Conclusions and Demo

11

RandHound
• Goals

‣ Verifiability: By third parties
‣ Scalability: Performance better than O(n3)

• Client/server randomness
scavenging protocol
‣ Untrusted client uses a large set of nearly-

stateless servers
‣ On demand (via configuration file)
‣ One-shot approach
‣ Example: lottery authority

12

Client

Servers

verifiable
randomness

RandHound
Achieving Public Verifiability

• Publicly-VSS (Schoenmakers, 1999)
‣ Shares are encrypted and publicly verifiable

through zero-knowledge proofs
‣ No communication between servers

• Collective signing (Syta, 2016)
‣ Client publicly commits to their choices

• Create protocol transcript from all
sent/received (signed) messages

13

Client

PVSS-Servers

randomness &
transcript

RandHound
Achieving Scalability

• Shard participants into constant size groups
‣ Secret sharing with everyone too expensive!
‣ Run secret sharing (only) inside groups
‣ Collective randomness: combination of  

all group outputs

Chicken-and-Egg problem?

• How to securely assign participants to
groups?

14

PVSS 
group 1

PVSS 
group 2

Client

Servers

randomness &
transcript

RandHound
Solving the Chicken-and-Egg Problem

• Client selects server grouping

• Availability might be affected (self-DoS)

• Security properties through
‣ Pigeonhole principle: at least one group  

is not controlled by the adversary
‣ Collective signing: prevents client equivocation

by fixing the secrets that contribute to randomness

15

Client
randomness &

transcript

PVSS 
group 1

PVSS 
group 2

Servers

Public Randomness is (not so) Hard

16

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandHound

Communication / computation complexity: O(c2n)

RandHerd
• Goals

‣ Continuous, leader-coordinated
randomness generation

‣ Small randomness proof size  
(a single Schnorr signature)

‣ Better performance than O(n)

• Decentralized randomness beacon
‣ Built as a collective authority or cothority
‣ Randomness on demand, at frequent

intervals, or both

17

Leader

Participants

verifiable
randomness

A collective authority

Availability
assumption only

RandHerd
Achieving RandHerd’s Goals

• Idea
‣ Collective randomness = collective Schnorr signature
‣ Benefits: Small proofs, O(log n) complexity
‣ Problem: Failing nodes influence output

• Solution
‣ Arrange nodes into (t,n)-threshold Schnorr signing

(Stinson, 2001) groups (failure resistance)
‣ Collective randomness = aggregate group signatures
‣ Approach: Setup + round function

18

Leader

Participants

verifiable
randomness

A collective authority

1.Elect a temporary leader via lowest ticket  
ti = VRF(config, keyi)

2.Obtain randomness Z from RandHound

3.Create TSS groups using Z and generate
group keys Xi

4.Certify aggregate public key X using CoSi

19

RandHerd Setup

Leader

Servers
2.

Nodes
1.

X = X0X1X2  
(c,r)

4.
X1

X0 X2

3.

TSS group 0

TSS group 1 TSS group 2

(c,r)

collective
randomness

RandHerd Round

CL

TSS group 1 TSS group 2

TSS group 0

GLGL

20

Generation

1.Cothority Leader (CL) broadcasts timestamp v

2.TSS-CoSi
a. Produce group Schnorr signatures (c,r0) (c,r1) (c,r2) on v
b. Aggregate into collective Schnorr signature (c,r = r0+r1+r2)
c. Publish (c,r) as collective randomness

Verification of (c,r) on v using the collective
public key X = X0X1X2

(c,r0)

(c,r1) (c,r2)

Public Randomness is (not so) Hard

21

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandHound

RandHerd

Communication / computation complexity: O(c2log(n))

Talk Outline
• Motivation

‣ The need for public randomness
‣ Strawman examples: Towards unbiasable randomness

• Two Randomness Protocols
‣ RandHound
‣ RandHerd

• Implementation and Experimental Results

• Conclusions and Demo

22

Implementation & Experiments
Implementation

• Go versions of DLEQ-proofs,
PVSS, TSS, CoSi-TSS,
RandHound, RandHerd

• Based on DEDIS code
‣ Crypto library
‣ Network library
‣ Cothority framework

• https://github.com/dedis
23

DeterLab Setup

• 32 physical machines
‣ Intel Xeon E5-2650 v4  

(24 cores @ 2.2 GHz)
‣ 64 GB RAM
‣ 10 Gbps network link

• Network restrictions
‣ 100 Mbps bandwidth
‣ 200 ms round-trip latency

https://github.com/dedis

Experimental Results – RandHound

24
Take-away: Gen. / ver. time for 1 RandHound run is 290 sec / 160 sec with 1024 nodes, group size 32.

Experimental Results – RandHound

25
Take-away: Total cost for 1 RandHound run is 10 CPU min (EC2: < $0.02) with 1024 nodes, group size 32.

Experimental Results – RandHerd

26
Take-away: Gen. time for 1 RandHerd run with is 6 sec, after setup (10 mins) with 1024 nodes, group size 32.

Experimental Results – RandHerd

27
Take-away: For a constant group size RandHerd has O(log n) randomness generation complexity.

Talk Outline
• Motivation

‣ The need for public randomness
‣ Strawman examples: Towards unbiasable randomness

• Two Randomness Protocols
‣ RandHound
‣ RandHerd

• Implementation and Experimental Results

• Conclusions and Demo

28

Conclusion
• Generation of public randomness: trust and scale issues

• Our solution: two protocols in the (t,n)-threshold security model

• Code: https://github.com/dedis/cothority

29

Availability Unpredictability Unbiasability Verifiability Scalability Complexity

RandHound O(n)

RandHerd O(log(n))

https://github.com/dedis/cothority

Demo

30

pulsar.dedis.ch

https://pulsar.dedis.ch/

Thank you!

Questions?

31

Ewa Syta
ewa.syta@trincoll.edu

Philipp Jovanovic
philipp.jovanovic@epfl.ch

mailto:ewa.syta@trincoll.edu
mailto:philipp.jovanovic@epfl.ch

