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Public Randomness
• Collectively used 

• Unpredictable ahead of time  

• Not secret past a certain point in time 

• Applications 
‣ Random selection: lotteries, sweepstakes, jury selection, voting and election audits 
‣ Games: shuffled decks, team assignments 
‣ Protocols: parameters, IVs, nonces, sharding 
‣ Crypto: challenges for NZKP, authentication protocols, cut-and-choose methods, 

“nothing up my sleeves” numbers
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Failed / Rigged Randomness
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Vietnam War Lotteries (1969)



Public Randomness is not New

• 1955: Large table of random 
numbers published as a book by the 
Rand Corporation 

• Today: Generating public random 
numbers is (still) hard 

• Main issues: trust and scale
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Goals
1. Availability

Successful protocol 
termination for up to 

f=t-1 malicious nodes.
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2. Unpredictability
Output not revealed 

prematurely.
3. Unbiasability

Output distributed 
uniformly at random.

4. Verifiability
Output correctness 
can be checked by 

third parties.

5. Scalability
Executable with 

hundreds of 
participants.Decentralized, 

public randomness 
in the (t,n)-threshold 

security model

Assumptions: n= 3f +1, Byzantine adversary and asynchronous network with eventual message delivery



Public Randomness Approaches
• With Trusted Third Party 
‣ NIST Randomness Beacon 

• Without TTP 
Unusual assumptions 
‣ Bitcoin (Bonneau, 2015) 
‣ Slow cryptographic hash functions (Lenstra, 2015) 
‣ Lotteries (Baigneres, 2015) 
‣ Financial data (Clark, 2010) 

(t,n)-threshold security model but not scalable 
‣ Coin-flipping (Cachin, 2015) 
‣ Distributed key generation (Kate, 2009)
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Public Randomness is Hard

Strawman I
• Idea: Combine random 

inputs of all participants. 
• Problem: Last node 

controls output.
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Strawman II
• Idea: Commit-then-reveal 

random inputs. 
• Problem: Dishonest nodes 

can choose not to reveal.

Strawman III
• Idea: Secret-share random 

inputs. 
• Problem: Dishonest nodes 

can send bad shares.

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III



Public Randomness is Hard
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Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandShare
• Idea: Strawman III + verifiable secret sharing (Feldman, 1987) 
• Problems:  

‣ Not publicly verifiable 
‣ Not scalable: O(n3) communication / computation complexity
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RandHound
• Goals 

‣ Verifiability: By third parties 
‣ Scalability: Performance better than O(n3) 

• Client/server randomness 
scavenging protocol 
‣ Untrusted client uses a large set of nearly-

stateless servers 
‣ On demand (via configuration file) 
‣ One-shot approach 
‣ Example: lottery authority
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Client

Servers

verifiable  
randomness



RandHound 
Achieving Public Verifiability

• Publicly-VSS (Schoenmakers, 1999) 
‣ Shares are encrypted and publicly verifiable 

through zero-knowledge proofs 
‣ No communication between servers 

• Collective signing (Syta, 2016) 
‣ Client publicly commits to their choices 

• Create protocol transcript from all 
sent/received (signed) messages
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Client

PVSS-Servers

randomness &  
transcript



RandHound
Achieving Scalability

• Shard participants into constant size groups 
‣ Secret sharing with everyone too expensive! 
‣ Run secret sharing (only) inside groups 
‣ Collective randomness: combination of  

all group outputs 

Chicken-and-Egg problem?

• How to securely assign participants to 
groups?
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PVSS 
group 1

PVSS 
group 2

Client

Servers

randomness &  
transcript



RandHound
Solving the Chicken-and-Egg Problem

• Client selects server grouping 

• Availability might be affected (self-DoS) 

• Security properties through 
‣ Pigeonhole principle: at least one group  

is not controlled by the adversary 
‣ Collective signing: prevents client equivocation    

by fixing the secrets that contribute to randomness
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Client
randomness &  

transcript

PVSS 
group 1

PVSS 
group 2

Servers



Public Randomness is (not so) Hard
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Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandHound

Communication / computation complexity: O(c2n)



RandHerd
• Goals 

‣ Continuous, leader-coordinated 
randomness generation 

‣ Small randomness proof size  
(a single Schnorr signature) 

‣ Better performance than O(n) 

• Decentralized randomness beacon 
‣ Built as a collective authority or cothority 
‣ Randomness on demand, at frequent 

intervals, or both
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Leader

Participants

verifiable  
randomness

A collective authority

Availability 
assumption only



RandHerd
Achieving RandHerd’s Goals

• Idea 
‣ Collective randomness = collective Schnorr signature 
‣ Benefits: Small proofs, O(log n) complexity 
‣ Problem: Failing nodes influence output 

• Solution 
‣ Arrange nodes into (t,n)-threshold Schnorr signing 

(Stinson, 2001) groups (failure resistance) 
‣ Collective randomness = aggregate group signatures 
‣ Approach: Setup + round function
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Leader

Participants

verifiable  
randomness

A collective authority



1.Elect a temporary leader via lowest ticket  
ti = VRF(config, keyi) 

2.Obtain randomness Z from RandHound 

3.Create TSS groups using Z and generate 
group keys Xi 

4.Certify aggregate public key X using CoSi
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RandHerd Setup

Leader

Servers
2.

Nodes
1.

X = X0X1X2  
(c,r)

4.
X1

X0 X2

3.

TSS group 0

TSS group 1 TSS group 2



(c,r)

collective  
randomness

RandHerd Round

CL

TSS group 1 TSS group 2

TSS group 0

GLGL
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Generation

1.Cothority Leader (CL) broadcasts timestamp v 

2.TSS-CoSi  
a. Produce group Schnorr signatures (c,r0) (c,r1) (c,r2) on v
b. Aggregate into collective Schnorr signature (c,r = r0+r1+r2)
c. Publish (c,r) as collective randomness 

Verification of (c,r) on v using the collective 
public key X = X0X1X2

(c,r0)

(c,r1) (c,r2)



Public Randomness is (not so) Hard

21

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandHound

RandHerd

Communication / computation complexity: O(c2log(n))
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Implementation & Experiments
Implementation

• Go versions of DLEQ-proofs, 
PVSS, TSS, CoSi-TSS, 
RandHound, RandHerd 

• Based on DEDIS code 
‣ Crypto library 
‣ Network library 
‣ Cothority framework 

• https://github.com/dedis
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DeterLab Setup

• 32 physical machines 
‣ Intel Xeon E5-2650 v4  

(24 cores @ 2.2 GHz) 
‣ 64 GB RAM 
‣ 10 Gbps network link 

• Network restrictions 
‣ 100 Mbps bandwidth 
‣ 200 ms round-trip latency

https://github.com/dedis


Experimental Results – RandHound
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Take-away: Gen. / ver. time for 1 RandHound run is 290 sec / 160 sec with 1024 nodes, group size 32.



Experimental Results – RandHound
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Take-away: Total cost for 1 RandHound run is 10 CPU min (EC2: < $0.02) with 1024 nodes, group size 32.



Experimental Results – RandHerd
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Take-away: Gen. time for 1 RandHerd run with is 6 sec, after setup (10 mins) with 1024 nodes, group size 32.



Experimental Results – RandHerd
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Take-away: For a constant group size RandHerd has O(log n) randomness generation complexity.
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Conclusion
• Generation of public randomness: trust and scale issues 

• Our solution: two protocols in the (t,n)-threshold security model 

• Code: https://github.com/dedis/cothority 
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Availability Unpredictability Unbiasability Verifiability Scalability Complexity

RandHound O(n)

RandHerd O(log(n))

https://github.com/dedis/cothority


Demo
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pulsar.dedis.ch

https://pulsar.dedis.ch/


Thank you! 

Questions?
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