Improved Masking for Tweakable Blockciphers with Applications to Authenticated Encryption

Robert Granger ${ }^{1}$, Philipp Jovanovic ${ }^{1}$, Bart Mennink ${ }^{2}$, Samuel Neves ${ }^{3}$

${ }^{1}$ École Polytechnique Fédérale de Lausanne, Switzerland
${ }^{2} \mathrm{KU}$ Leuven, Belgium
${ }^{3}$ University of Coimbra, Portugal

Eurocrypt 2016
Vienna, Austria

Tweakable Blockciphers

Tweakable Blockciphers

- Tweak T: adds flexibility to the cipher
- Different tweak \Rightarrow different permutation

Authenticated Encryption

- Ciphertext C is encryption of message M
- Tag T authenticates associated data A and message M
- Nonce N randomizes the scheme (similar to a tweak)

Tweakable Blockciphers in OCBx

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- Internally based on tweakable blockcipher \widetilde{E}

Tweakable Blockciphers in OCBx

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- Internally based on tweakable blockcipher \widetilde{E}
- Tweak (N, t):
- Unique for every evaluation
- Different blocks always transformed by different tweaks

Tweakable Blockciphers in OCBx

- Generalized OCB by Rogaway et al. [RBBK01,Rog04,KR11]
- Internally based on tweakable blockcipher \widetilde{E}
- Tweak (N, t):
- Unique for every evaluation
- Different blocks always transformed by different tweaks
- Change should be efficient

Tweakable Blockciphers

1998: Hasty Pudding Cipher [Sch98]:

- AES submission
- "first tweakable cipher"

2001: Mercy [Cro01] (disk encryption)

2007: Threefish [FLS+07] in SHA-3 submission Skein

2014: TWEAKEY [JNP14] in CAESAR submissions:

- Deoxys
- Joltik
- KIASU

Tweakable Blockciphers

1998: Hasty Pudding Cipher [Sch98]:

- AES submission
- "first tweakable cipher"

2001: Mercy [Cro01] (disk encryption)

2007: Threefish [FLS+07] in SHA-3 submission Skein

2014: TWEAKEY [JNP14] in CAESAR submissions:

- Deoxys
- Joltik
- KIASU

Our focus: generic tweakable blockcipher design

Masking-Based Tweakable Blockciphers

Blockcipher-Based

Masking-Based Tweakable Blockciphers

Blockcipher-Based

Permutation-Based

Masking-Based Tweakable Blockciphers

Blockcipher-Based

typically 128 bits

Permutation-Based

much larger: 256-1600 bits

Powering-Up Masking

- Tweak (simplified): $(\alpha, \beta, \gamma, N)$

Powering-Up Masking

- Tweak (simplified): $(\alpha, \beta, \gamma, N)$
- Used in OCB2 and various CAESAR candidates

Powering-Up Masking

TEM
[STA+14]
$2^{\alpha} 3^{\beta} 7^{\gamma} \cdot(K \| N \oplus P(K \| N))$

- Tweak (simplified): $(\alpha, \beta, \gamma, N)$
- Used in OCB2 and various CAESAR candidates
- Permutation-based variants: Minalpher and Prøst

Powering-Up Masking in OCB2

$$
L=E_{K}(N)
$$

- Update of mask: shift and conditional XOR
- Variable time computation
- Expensive on certain platforms

Word-based Powering-Up Masking

- By Chakraborty and Sarkar [CS06]
- Tweak: (i, N)

Word-based Powering-Up Masking

- By Chakraborty and Sarkar [CS06]
- Tweak: (i, N)
- Tower of fields:
- $z^{i} \in \mathbb{F}_{2^{w}}[z] / g$ for $z \in\{0,1\}^{w} \ldots$
- ... instead of $x^{i} \in \mathbb{F}_{2}[x] / f$

Word-based Powering-Up Masking

- By Chakraborty and Sarkar [CS06]
- Tweak: (i, N)
- Tower of fields:
- $z^{i} \in \mathbb{F}_{2^{w}}[z] / g$ for $z \in\{0,1\}^{w} \ldots$
- ... instead of $x^{i} \in \mathbb{F}_{2}[x] / f$
- Similar drawbacks as regular powering-up

Gray Code Masking

- Used in OCB1 and OCB3
- Tweak: (i, N)
- Updating: $G(i)=G(i-1) \oplus 2^{\text {ntz }(i)} \cdot E_{K}(N)$

Gray Code Masking

- Used in OCB1 and OCB3
- Tweak: (i, N)
- Updating: $G(i)=G(i-1) \oplus 2^{\text {ntz }(i)} \cdot E_{K}(N)$
- Single XOR
- $\log _{2} i$ field doublings (precomputation possible)

Gray Code Masking

- Used in OCB1 and OCB3
- Tweak: (i, N)
- Updating: $G(i)=G(i-1) \oplus 2^{\text {ntz }(i)} \cdot E_{K}(N)$
- Single XOR
- $\log _{2} i$ field doublings (precomputation possible)
- More efficient than powering-up [KR11]

High-Level Contributions

Masked Even-Mansour

- Improved masking of tweakable blockciphers
- Simpler to implement and more efficient
- Constant time (by default)
- Relies on breakthroughs in discrete log computation

High-Level Contributions

Masked Even-Mansour

- Improved masking of tweakable blockciphers
- Simpler to implement and more efficient
- Constant time (by default)
- Relies on breakthroughs in discrete log computation

Application to Authenticated Encryption

- Nonce-respecting AE in 0.55 cpb
- Misuse-resistant AE in 1.06 cpb

Masked Even-Mansour (MEM)

- Fixed LFSRs: φ_{i}
- Tweak (simplified): $(\alpha, \beta, \gamma, N)$

Masked Even-Mansour (MEM)

- Fixed LFSRs: φ_{i}
- Tweak (simplified): $(\alpha, \beta, \gamma, N)$
- Combines advantages of:
- Powering-up masking
- Word-based LFSRs

Masked Even-Mansour (MEM)

- Fixed LFSRs: φ_{i}
- Tweak (simplified): $(\alpha, \beta, \gamma, N)$
- Combines advantages of:
- Powering-up masking
- Word-based LFSRs
- Simpler, more efficient, constant-time (by default)

Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR

Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR
- Sample LFSRs (state size b as n words of w bits):

b	w	n		
128	8	16	$\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 2\right) \oplus\left(\left(x_{4} \\| x_{3}\right) \gg 3\right)\right.$	
128	32	4	$\left(x_{1}, \ldots, x_{3},\left(x_{0} \lll 5\right) \oplus x_{1} \oplus\left(x_{1} \ll 13\right)\right)$	
128	64	2	$\left(x_{1}, \quad\left(x_{0} \ll 4\right) \oplus\left(\left(x_{1} \\| x_{0}\right) \gg 25\right)\right.$	
256	64	4	$\left(x_{1}, \ldots, x_{3},\left(x_{0} \ll 3\right) \oplus\left(x_{3} \gg 5\right)\right)$	
512	32	16	$\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 5\right) \oplus\left(x_{3} \gg 7\right)\right)$	
512	64	8	$\left(x_{1}, \ldots, x_{7},\left(x_{0} \ll 29\right) \oplus\left(x_{1} \ll 9\right)\right)$	
1024	64	16	$\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)$	
1600	32	50	$\left(x_{1}, \ldots, x_{49},\left(x_{0} \ll 3\right) \oplus\left(x_{23} \gg 3\right)\right)$	
1600	64	25	$\left(x_{1}, \ldots, x_{24},\left(x_{0} \ll 14\right) \oplus\left(\left(x_{1} \\| x_{0}\right) \gg 13\right)\right.$	
\vdots	\vdots	\vdots	\vdots	

Design Considerations

- Particularly suited for large states (permutations)
- Low operation counts by clever choice of LFSR
- Sample LFSRs (state size b as n words of w bits):

b	w	n		
128	8	16	$\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 2\right) \oplus\left(\left(x_{4} \\| x_{3}\right) \gg 3\right)\right.$	
128	32	4	$\left(x_{1}, \ldots, x_{3},\left(x_{0} \lll 5\right) \oplus x_{1} \oplus\left(x_{1} \ll 13\right)\right)$	
128	64	2	$\left(x_{1}, \quad\left(x_{0} \ll 4\right) \oplus\left(\left(x_{1} \\| x_{0}\right) \gg 25\right)\right.$	
256	64	4	$\left(x_{1}, \ldots, x_{3},\left(x_{0} \ll 3\right) \oplus\left(x_{3} \gg 5\right)\right)$	
512	32	16	$\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 5\right) \oplus\left(x_{3} \gg 7\right)\right)$	
512	64	8	$\left(x_{1}, \ldots, x_{7},\left(x_{0} \lll 29\right) \oplus\left(x_{1} \ll 9\right)\right)$	
1024	64	16	$\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)$	
1600	32	50	$\left(x_{1}, \ldots, x_{49},\left(x_{0} \ll 3\right) \oplus\left(x_{23} \gg 3\right)\right)$	
1600	64	25	$\left(x_{1}, \ldots, x_{24},\left(x_{0} \lll 14\right) \oplus\left(\left(x_{1} \\| x_{0}\right) \gg 13\right)\right.$	
\vdots	\vdots	\vdots	\vdots	

- Work exceptionally well for ARX primitives

Uniqueness of Masking

- Intuitively, masking goes well as long as

$$
\varphi_{2}^{\gamma} \circ \varphi_{1}^{\beta} \circ \varphi_{0}^{\alpha} \neq \varphi_{2}^{\gamma^{\prime}} \circ \varphi_{1}^{\beta^{\prime}} \circ \varphi_{0}^{\alpha^{\prime}}
$$

for any $(\alpha, \beta, \gamma) \neq\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Uniqueness of Masking

- Intuitively, masking goes well as long as

$$
\varphi_{2}^{\gamma} \circ \varphi_{1}^{\beta} \circ \varphi_{0}^{\alpha} \neq \varphi_{2}^{\gamma^{\prime}} \circ \varphi_{1}^{\beta^{\prime}} \circ \varphi_{0}^{\alpha^{\prime}}
$$

for any $(\alpha, \beta, \gamma) \neq\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Uniqueness of Masking

- Intuitively, masking goes well as long as

$$
\varphi_{2}^{\gamma} \circ \varphi_{1}^{\beta} \circ \varphi_{0}^{\alpha} \neq \varphi_{2}^{\gamma^{\prime}} \circ \varphi_{1}^{\beta^{\prime}} \circ \varphi_{0}^{\alpha^{\prime}}
$$

for any $(\alpha, \beta, \gamma) \neq\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Uniqueness of Masking

- Intuitively, masking goes well as long as

$$
\varphi_{2}^{\gamma} \circ \varphi_{1}^{\beta} \circ \varphi_{0}^{\alpha} \neq \varphi_{2}^{\gamma^{\prime}} \circ \varphi_{1}^{\beta^{\prime}} \circ \varphi_{0}^{\alpha^{\prime}}
$$

for any $(\alpha, \beta, \gamma) \neq\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Uniqueness of Masking

- Intuitively, masking goes well as long as

$$
\varphi_{2}^{\gamma} \circ \varphi_{1}^{\beta} \circ \varphi_{0}^{\alpha} \neq \varphi_{2}^{\gamma^{\prime}} \circ \varphi_{1}^{\beta^{\prime}} \circ \varphi_{0}^{\alpha^{\prime}}
$$

for any $(\alpha, \beta, \gamma) \neq\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

Uniqueness of Masking

- Intuitively, masking goes well as long as

$$
\varphi_{2}^{\gamma} \circ \varphi_{1}^{\beta} \circ \varphi_{0}^{\alpha} \neq \varphi_{2}^{\gamma^{\prime}} \circ \varphi_{1}^{\beta^{\prime}} \circ \varphi_{0}^{\alpha^{\prime}}
$$

for any $(\alpha, \beta, \gamma) \neq\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

- Logs for $2^{11}, 2^{12}, 2^{13}$ easily doable with latest techniques

"Bare" Implementation Results

- Mask computation in cycles per update
- In most pessimistic scenario (for ours):

Masking	Sandy Bridge	Haswell
Powering-up	13.108	10.382
Gray code	6.303	3.666
Ours	2.850	2.752

- Differences may amplify/diminish in a mode

Application to AE: OPP

- Offset Public Permutation (OPP)
- Security against nonce-respecting adversaries

Application to AE: MRO

- Misuse-Resistant OPP (MRO)
- Fully nonce-misuse resistant version of OPP

Implementation

- State size $b=1024$
- LFSR on 16 words of 64 bits:

$$
\varphi\left(x_{0}, \ldots, x_{15}\right)=\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)
$$

- P: BLAKE2b permutation with 4 or 6 rounds

Implementation

- State size $b=1024$
- LFSR on 16 words of 64 bits:

$$
\varphi\left(x_{0}, \ldots, x_{15}\right)=\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)
$$

- P: BLAKE2b permutation with 4 or 6 rounds
- Main implementation results (more in paper):

	nonce-respecting						misuse-resistant
Platform	AES-GCM	OCB3	Deoxys $^{\neq}$	OPP_{4}	OPP_{6}		
Cortex-A8	38.6	28.9	-	4.26	5.91		
Sandy Bridge	2.55	0.98	1.29	1.24	1.91		
Haswell	1.03	0.69	0.96	0.55	0.75		

Implementation

- State size $b=1024$
- LFSR on 16 words of 64 bits:

$$
\varphi\left(x_{0}, \ldots, x_{15}\right)=\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)
$$

- P: BLAKE2b permutation with 4 or 6 rounds
- Main implementation results (more in paper):

Platform	nonce-respecting					misuse-resistant			
	AES-GCM	OCB3	Deoxys ${ }=$	OPP_{4}	OPP_{6}	GCM-SIV	Deoxys $=$	MRO_{4}	MRO_{6}
Cortex-A8	38.6	28.9	-	4.26	5.91	-	-	8.07	11.32
Sandy Bridge	2.55	0.98	1.29	1.24	1.91	-	2.58	2.41	3.58
Haswell	1.03	0.69	0.96	0.55	0.75	1.17	1.92	1.06	1.39

Implementation

- State size $b=1024$
- LFSR on 16 words of 64 bits:

$$
\varphi\left(x_{0}, \ldots, x_{15}\right)=\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)
$$

- P: BLAKE2b permutation with 4 or 6 rounds
- Main implementation results (more in paper):

Platform	nonce-respecting					misuse-resistant			
	AES-GCM	OCB3	Deoxys ${ }=$	OPP_{4}	OPP_{6}	GCM-SIV	Deoxys $=$	MRO_{4}	MRO_{6}
Cortex-A8	38.6	28.9	-	4.26	5.91	-	-	8.07	11.32
Sandy Bridge	2.55	0.98	1.29	1.24	1.91	-	2.58	2.41	3.58
Haswell	1.03	0.69	0.96	0.55	0.75	1.17	1.92	1.06	1.39

- OPP: $\approx 6.36 \mathrm{GiBps}, \mathrm{MRO}: \approx 3.30 \mathrm{GiBps}$

Implementation: Parallelizability

- LFSR on 16 words of 64 bits:

$$
\varphi\left(x_{0}, \ldots, x_{15}\right)=\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)
$$

Implementation: Parallelizability

- LFSR on 16 words of 64 bits:

$$
\varphi\left(x_{0}, \ldots, x_{15}\right)=\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)
$$

- Begin with state $L_{i}=\left[x_{0}, \ldots, x_{15}\right]$ of 64 -bit words

x_{0}	x_{1}	x_{2}	x_{3}
x_{4}	x_{5}	x_{6}	x_{7}
x_{8}	x_{9}	x_{10}	x_{11}
x_{12}	x_{13}	x_{14}	x_{15}

Implementation: Parallelizability

- LFSR on 16 words of 64 bits:

$$
\varphi\left(x_{0}, \ldots, x_{15}\right)=\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)
$$

- Begin with state $L_{i}=\left[x_{0}, \ldots, x_{15}\right]$ of 64-bit words

x_{0}	x_{1}	x_{2}	x_{3}
x_{4}	x_{5}	x_{6}	x_{7}
x_{8}	x_{9}	x_{10}	x_{11}
x_{12}	x_{13}	x_{14}	x_{15}
x_{16}			

- $x_{16}=\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)$

Implementation: Parallelizability

- LFSR on 16 words of 64 bits:

$$
\varphi\left(x_{0}, \ldots, x_{15}\right)=\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)
$$

- Begin with state $L_{i}=\left[x_{0}, \ldots, x_{15}\right]$ of 64-bit words

x_{0}	x_{1}	x_{2}	x_{3}
x_{4}	x_{5}	x_{6}	x_{7}
x_{8}	x_{9}	x_{10}	x_{11}
x_{12}	x_{13}	x_{14}	x_{15}
x_{16}	x_{17}		

- $x_{16}=\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)$
- $x_{17}=\left(x_{1} \lll 53\right) \oplus\left(x_{6} \ll 13\right)$

Implementation: Parallelizability

- LFSR on 16 words of 64 bits:

$$
\varphi\left(x_{0}, \ldots, x_{15}\right)=\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)
$$

- Begin with state $L_{i}=\left[x_{0}, \ldots, x_{15}\right]$ of 64-bit words

x_{0}	x_{1}	x_{2}	x_{3}
x_{4}	x_{5}	x_{6}	x_{7}
x_{8}	x_{9}	x_{10}	x_{11}
x_{12}	x_{13}	x_{14}	x_{15}
x_{16}	x_{17}	x_{18}	

- $x_{16}=\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)$
- $x_{17}=\left(x_{1} \lll 53\right) \oplus\left(x_{6} \ll 13\right)$
- $x_{18}=\left(x_{2} \lll 53\right) \oplus\left(x_{7} \ll 13\right)$

Implementation: Parallelizability

- LFSR on 16 words of 64 bits:

$$
\varphi\left(x_{0}, \ldots, x_{15}\right)=\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)
$$

- Begin with state $L_{i}=\left[x_{0}, \ldots, x_{15}\right]$ of 64-bit words

x_{0}	x_{1}	x_{2}	x_{3}
x_{4}	x_{5}	x_{6}	x_{7}
x_{8}	x_{9}	x_{10}	x_{11}
x_{12}	x_{13}	x_{14}	x_{15}
x_{16}	x_{17}	x_{18}	x_{19}

- $x_{16}=\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)$
- $x_{17}=\left(x_{1} \lll 53\right) \oplus\left(x_{6} \ll 13\right)$
- $x_{18}=\left(x_{2} \lll 53\right) \oplus\left(x_{7} \ll 13\right)$
- $x_{19}=\left(x_{3} \lll 53\right) \oplus\left(x_{8} \ll 13\right)$

Implementation: Parallelizability

- LFSR on 16 words of 64 bits:

$$
\varphi\left(x_{0}, \ldots, x_{15}\right)=\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)
$$

- Begin with state $L_{i}=\left[x_{0}, \ldots, x_{15}\right]$ of 64-bit words

x_{0}	x_{1}	x_{2}	x_{3}
x_{4}	x_{5}	x_{6}	x_{7}
x_{8}	x_{9}	x_{10}	x_{11}
x_{12}	x_{13}	x_{14}	x_{15}
x_{16}	x_{17}	x_{18}	x_{19}

- $x_{16}=\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)$
- $x_{17}=\left(x_{1} \lll 53\right) \oplus\left(x_{6} \ll 13\right)$
- $x_{18}=\left(x_{2} \lll 53\right) \oplus\left(x_{7} \ll 13\right)$
- $x_{19}=\left(x_{3} \lll 53\right) \oplus\left(x_{8} \ll 13\right)$
- Parallelizable and word-sliceable (AVX2)

Conclusion

Masked Even-Mansour

- Simple, efficient, constant-time (by default)
- Justified by breakthroughs in discrete log computation
- MEM-based AE is able to outperform its closest competitors

Conclusion

Masked Even-Mansour

- Simple, efficient, constant-time (by default)
- Justified by breakthroughs in discrete log computation
- MEM-based AE is able to outperform its closest competitors

More Info

- https://eprint.iacr.org/2015/999 (full version)
- https://github.com/MEM-AEAD

Conclusion

Masked Even-Mansour

- Simple, efficient, constant-time (by default)
- Justified by breakthroughs in discrete log computation
- MEM-based AE is able to outperform its closest competitors

More Info

- https://eprint.iacr.org/2015/999 (full version)
- https://github.com/MEM-AEAD

Support: Masking Function Search

- Basis:

$$
M=\left(\begin{array}{cccc}
0 & I & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & I \\
X_{0} & X_{1} & \cdots & X_{n-1}
\end{array}\right) \in \mathbb{F}_{2^{n w}} \times \mathbb{F}_{2^{n w}}
$$

with $X_{i} \in\left\{0, I, \mathrm{SHL}_{c}, \mathrm{SHR}_{c}, \mathrm{ROT}_{c}, \mathrm{AND}_{c}\right\}, \operatorname{dim}\left(X_{i}\right)=w$

- Check: minimal polynomial of M is primitive of degree b
- Then: $\varphi^{i}(L)=M^{i} \cdot L$ has period $2^{b}-1$
- Note:

$$
\varphi:\left(x_{0}, \ldots, x_{n-1}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}, f\left(x_{0}, \ldots, x_{n-1}\right)\right)
$$

Support: Tweak Space Domain Separation

Lemma

- $\varphi:\{0,1\}^{1024} \mapsto\{0,1\}^{1024}$, with

$$
\varphi\left(x_{0}, \ldots, x_{15}\right)=\left(x_{1}, \ldots, x_{15},\left(x_{0} \lll 53\right) \oplus\left(x_{5} \ll 13\right)\right)
$$

and associated transformation matrix M

- $\varphi_{0}^{i_{0}}(L)=M^{i_{0}} \cdot L$,
- $\varphi_{1}^{i_{1}}(L)=(M+I)^{i_{1}} \cdot L$
- $\varphi_{2}^{i_{2}}(L)=\left(M^{2}+M+I\right)^{i_{2}} \cdot L$

The tweak space

$$
\mathcal{T}=\mathcal{T}_{0} \times \mathcal{T}_{1} \times \mathcal{T}_{2}=\left\{0,1, \ldots, 2^{1020}-1\right\} \times\{0,1,2,3\} \times\{0,1\}
$$

is b-proper relative to the function set $\left\{\varphi_{0}^{i_{0}}, \varphi_{1}^{i_{1}}, \varphi_{2}^{i_{2}}\right\}$.

Support: Tweak Space Domain Separation via Lattices

- Lattice spanned by rows of

$$
\left(\begin{array}{cccc}
K \cdot 1 & w_{0} & 0 & 0 \\
K \cdot I_{1} & 0 & w_{1} & 0 \\
K \cdot I_{2} & 0 & 0 & w_{2} \\
K \cdot m & 0 & 0 & 0
\end{array}\right)
$$

for integers $K, m=2^{b}-1$, weights w_{i}, and dlogs I_{1}, I_{2}

- Then

$$
\left(\Delta i_{0}+\Delta i_{1} l_{1}+\Delta i_{2} i_{2}+k m, \Delta i_{0} w_{0}, \Delta i_{1} w_{1}, \Delta i_{2} w_{2}\right)
$$

is shortest vector if

$$
\Delta i_{0}+\Delta i_{1} l_{1}+\Delta i_{2} l_{2} \equiv 0 \quad\left(\bmod 2^{n}-1\right)
$$

- For $\left(w_{0}, w_{1}, w_{2}\right)=\left(1,2^{1019}, 2^{1022}\right)$, similar tweak space as in Lemma on last slide

