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Who are we?

Philipp Jovanovic, @Daeinar, EPFL

Ismail Khoffi, EPFL 

Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky,   
Yale University, USA

Linus Gasser, Nicolas Gailly, Bryan Ford,
EPFL, CH

Code: https://github.com/dedis/cothority
Mailing list: https://groups.google.com/forum/#!forum/cothority
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What do all of the previous incidents 
have in common? 
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What do all of the previous incidents 
have in common? 

Subverted authorities!
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Why do we even have authorities?
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Alice

check email
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BobAlice

send message

check email
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BobAlice

send message

check email

download app

13



BobAlice

request

What is:
- Gmail’s TLS public key?
- Bob’s IM public key?
- App Store’s public key?

Respect my
Authoritah!
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BobAlice

send message

check email

download & verify app

Respect my
Authoritah!

public key(s)
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We often rely on authorities ...
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Logging & Time-stamping 
Services, Digital Notaries
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Certificate AuthoritiesLogging & Time-stamping 
Services, Digital Notaries
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Naming Authorities

Certificate AuthoritiesLogging & Time-stamping 
Services, Digital Notaries
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Naming Authorities

Certificate AuthoritiesLogging & Time-stamping 
Services, Digital Notaries

Software Update Services
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Naming Authorities

Certificate Authorities

Randomness Authorities

Logging & Time-stamping 
Services, Digital Notaries

Software Update Services

21



Naming Authorities

Certificate Authorities

Randomness Authorities

Logging & Time-stamping 
Services, Digital Notaries

Software Update Services

NSA
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… but are authorities trustworthy?
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Authorities going bad

BobAlice

Respect my
Authoritah!
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Authorities going bad

BobAlice

Respect my
Authoritah!

bad public key(s)
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Authorities going bad

BobAlice

Respect my
Authoritah!

FAKE

FAKE

FAKE

bad public key(s)
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Problems

1) Authorities are powerful and wide-spread

Examples:

- Any CA can issue certs for arbitrary domains
- Hundreds of CAs trusted by web browsers
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2) Things go bad everywhere, all the time

Problems

Examples:

- Insider attacks
- Private key thefts
- Human error

- Hacking
- Compulsory key handover
- Side-channel attacks
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3) Weakest-link security: authority systems are very fragile

Examples:

- Adversary (e.g. hacker, spy agency)
needs only one CA key to subvert
entire system

Problems
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What if we could decentralise
 authority services?
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Decentralising Authorities 

from weakest-link
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Decentralising Authorities 

from weakest-link to strongest-link security

32



Decentralising Authorities

There are already many tools available:

- “Anytrust”: 1-of-k servers honest, all k live
- Byzantine replication: ⅔ honest, ⅔ live
- Threshold cryptography
- Multi-signature schemes
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Decentralising Authorities

Trust-splitting (so far):

- Rare
- Challenging to implement
- Usually not scalable to large groups
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Decentralising Authorities

Trust-splitting (so far):

- Rare
- Challenging to implement
- Usually not scalable to large groups

But:

- Is splitting across 5-10 servers enough 
(e.g. against state-level adversaries)?

- Are participants truly independent and diverse?
- Who chooses the composition and how?
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Cothorities
Large-scale collective authorities
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Cothorities

Implement trust-splitting that is:

Scalable               Secure               Robust               Flexible
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Cothorities

Implement trust-splitting that is:

Scalable               Secure               Robust               Flexible

First-step goal: 
Generically improve security of any authority 

independent of type or semantics.
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Witness Cothorities

“Who watches the watchers?” 

“Public witnesses!”

Witnesses

Respect my
Authoritah!
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Witness Cothorities

“Who watches the watchers?”

“Public witnesses!”

CoSi: Collective Signing Protocol

- Authority: generate statements
- Witnesses:

- collective & proactive sanity-check
- contribute to collective signature

Witnesses

Respect my
Authoritah!
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CoSi: Collective Signing

“The time is 3PM.”

“Gmail’s public key is X.”

“The latest version of Firefox is Z.”

“Bob’s public key is Y.”

Witnesses

Authority
(leader)

Witness
Cothority
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CoSi: Design

Builds on well-known crypto primitives:

- Merkle Trees
- Schnorr (Multi-)Signatures
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CoSi: Design

Builds on well-known crypto primitives:

- Merkle Trees
- Schnorr (Multi-)Signatures

Scalability (to thousands of nodes) through:

- Communication trees
- Aggregation

E.g. as in scalable multicast protocols 43



Merkle Trees

g

e

a

f

dcb

b = H(x)a = H(w) c = H(y) d = H(z)

g = H(e || f)

e = H(a || b) f = H(c || d)

Merkle Tree hash
- hash trees
- verification of large data 

structures in O(log n)
- signed top hash (STH): 

efficient authentication
- used in many projects: 

Git, ZFS, BitTorrent, Bitcoin, 
Certificate Transparency, Tahoe-
LAFS, etc.
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Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

Schnorr (Multi-)Signatures
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Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

1. Commitment v1,V1 = gv1 v2,V2 = gv2 V = V1 * V2

Schnorr (Multi-)Signatures
S

ig
ni

ng
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Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

1. Commitment v1,V1 = gv1 v2,V2 = gv2 V = V1 * V2

2. Challenge c c c = H(M || V)

Schnorr (Multi-)Signatures
S

ig
ni

ng
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Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

1. Commitment v1,V1 = gv1 v2,V2 = gv2 V = V1 * V2

2. Challenge c c c = H(M || V)

3. Response r1 = v1 - k1c r2 = v2 - k2c r = r1 + r2

Schnorr (Multi-)Signatures
S

ig
ni

ng
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Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

1. Commitment v1,V1 = gv1 v2,V2 = gv2 V = V1 * V2

2. Challenge c c c = H(M || V)

3. Response r1 = v1 - k1c r2 = v2 - k2c r = r1 + r2

Signature on M (c,r)

Schnorr (Multi-)Signatures
S

ig
ni

ng
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Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

Signature on M (c,r)

1. Commitment recovery K = K1 * K2 V’ = grKc

Schnorr (Multi-)Signatures
V

er
ifi

ca
tio

n
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Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

Signature on M (c,r)

1. Commitment recovery K = K1 * K2 V’ = grKc

2. Challenge recovery c’ = H(M || V’)

Schnorr (Multi-)Signatures
V

er
ifi

ca
tio

n
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Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

Signature on M (c,r)

1. Commitment recovery K = K1 * K2 V’ = grKc

2. Challenge recovery c’ = H(M || V’)

3. Decision c = c’

Schnorr (Multi-)Signatures
V

er
ifi

ca
tio

n

?
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CoSi: Setup

7

5

21

6

43

K1,S1,
K1 = K1

K2,S2,
K2 = K2

K3,S3,
K3 = K3

K4,S4,
K4 = K4

K5,S5,
K5= K1K2K5

K6,S6,
K6= K3K4K6

K7,S7,
K7= K1...K7

Merkle Tree containing:

- Public key Ki

- Self-signed certificate Si

(using secret key ki)
- Aggregate public keys Ki

One-time verification costs: O(n)
On group change: O(|m-n|)
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CoSi: Round

1. Announcement Phase

2. Commitment Phase

3. Challenge Phase

4. Response Phase
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Merkle Tree containing:

- Commits Vi = gvi

- Aggregate commits Vi

Output:

- root hash = collective challenge c

CoSi: Commitment Phase

7

5

21

6

43

V1,V1 = V1

V5,
V5= V1V2V5

V6,
V6= V3V4V6

V7,
V7= V1...V7

V2,V2 = V2 V3,V3 = V3 V4,V4 = V4

c = H(…) Challenge
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CoSi: Response Phase

7

5

21

6

43

r1,r1 = r1

r5,
r5= r1+r2+r5

r6,
r6= r3+r4+r6

r7,
r7= r1 + … + r7

Compute:

- Response ri = vi - kic
- Aggregate response ri

Outputs:

- Valid partial signatures (c,ri)
- Complete signature (c,r7)

r2,r2 = r2 r3,r3 = r3 r4,r4 = r4
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The Availability Problem

- Assumption: server failures rare but non-negligible
- Availability loss
- DoS vulnerability if not addressed
- Persistently bad servers administratively handled
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The Availability Problem

- Assumption: server failures rare but non-negligible
- Availability loss
- DoS vulnerability if not addressed
- Persistently bad servers administratively handled

Solutions: (work-in-progress)

- Exceptions (remove failing node from co-signing, notify client)
- Life insurance (based on VSS)
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Cothority Implementation
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- Implemented in Go:

- Cothority prototype: https://github.com/dedis/cothority
- Crypto library: https://github.com/dedis/crypto

- Schnorr multi-signatures based on Ed25519:

- AGL’s Go port of DJB’s optimised code

- Experiments on DeterLab

- Up to 8192 virtual CoSi nodes
- Multiplexed on top of up to 32 physical machines
- Latency: 100ms round-trip between two servers

 

Implementation
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Experimental Results: Collective Signing Time
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Experimental Results: Computation Costs
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Cothority Applications
Let’s fix the Internet! :-)
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Certificate Transparency
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Certificate Transparency

CT
Cothority

“We co-sign the Signed Tree Head (STH).”

Witnesses

log server

IETF draft: https://datatracker.ietf.org/doc/draft-ford-trans-
witness/ 65



DNSSEC

ICANN / Verisign

“We sign the DNS root zone.”
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DNSSEC

DNS
Cothority

TLD
Witnesses

ICANN / Verisign

“We co-sign the DNS root zone.”
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Software Distribution
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Software Distribution

“The latest version of Firefox X.y.z”

Witnesses

Mozilla

Update
Cothority
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Reproducible Builds

“The latest reproducible build of Firefox X.y.z”

Witnesses

trusted server
reproduces the build

Update
Cothority

Mozilla
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Tor

picture credit: http://jordan-wright.com/ 71

http://jordan-wright.com/


“We co-sign the Tor directory list.”

Relay 
Witnesses

Onion
Cothority

Tor
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Cryptocurrencies
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Cryptocurrencies – Bitcoin-NG
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1 2 3

10 sec

5

10 min

Key-Block

Micro-Block

depends on

Signature
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Cryptocurrencies – BitCoSi

1 2 3

1 2 3 4 5

...

5-10 sec

Bitcoin
Cothority

Miner 
Witnesses

Key-Block

Micro-Block

depends on

6

75

Co-Signature



… and many more applications …
(public randomness, git, … stay tuned!)
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The Vision

Your CoNode

77



The Vision

Your CoNode

CA Cothority
Onion Cothority

78



Setup Your CoNode, Join the EPFL-Cothority!

$ curl https://api.github.com/repos/dedis/cothority/releases/latest \

| grep '"browser_download_url":' | awk -F\" '{ system("curl -L " $4) }' > conode-latest.tar.gz

$ tar -xvf conode-latest.tar.gz

$ ./start-conode.sh setup <ip-address>:<port>

$ ./stamp sign <file> # co-sign <file> through the EPFL-cothority

$ ./stamp check <file> # verify the signature of <file>

Send the generated public key key.pub to

https://groups.google.com/forum/#!forum/cothority

 and wait until we have verified your CoNode.
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Cothorities build on well-known ideas:

- Distributed/Byzantine consensus
- Merkle Trees
- Threshold crypto
- Multi-signature schemes

But demonstrate how to do trust-splitting at scale:

- Strongest-link security
- Practical: demonstrated for 8000+ participants
- Efficient: < 2 seconds signing latency at scale

Conclusion
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Thank you!

Don’t forget to check out:

http://arxiv.org/abs/1503.08768 (paper)

https://github.com/dedis/cothority (code)

https://groups.google.com/forum/#!forum/cothority (mailing list)
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