
Collective Authorities:
Securely Decentralising Trust at Scale

https://github.com/dedis/cothority

32C3
December 27, 2015

https://github.com/DeDiS/cothority
https://github.com/DeDiS/cothority

Who are we?

Philipp Jovanovic, @Daeinar, EPFL

Ismail Khoffi, EPFL

Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky,
Yale University, USA

Linus Gasser, Nicolas Gailly, Bryan Ford,
EPFL, CH

Code: https://github.com/dedis/cothority
Mailing list: https://groups.google.com/forum/#!forum/cothority

2

https://github.com/DeDiS/cothority
https://groups.google.com/forum/#!forum/cothority

3

4

5

6

7

What do all of the previous incidents
have in common?

8

What do all of the previous incidents
have in common?

Subverted authorities!

9

Why do we even have authorities?

10

Alice

check email

11

BobAlice

send message

check email

12

BobAlice

send message

check email

download app

13

BobAlice

request

What is:
- Gmail’s TLS public key?
- Bob’s IM public key?
- App Store’s public key?

Respect my
Authoritah!

14

BobAlice

send message

check email

download & verify app

Respect my
Authoritah!

public key(s)

15

We often rely on authorities ...

16

Logging & Time-stamping
Services, Digital Notaries

17

Certificate AuthoritiesLogging & Time-stamping
Services, Digital Notaries

18

Naming Authorities

Certificate AuthoritiesLogging & Time-stamping
Services, Digital Notaries

19

Naming Authorities

Certificate AuthoritiesLogging & Time-stamping
Services, Digital Notaries

Software Update Services

20

Naming Authorities

Certificate Authorities

Randomness Authorities

Logging & Time-stamping
Services, Digital Notaries

Software Update Services

21

Naming Authorities

Certificate Authorities

Randomness Authorities

Logging & Time-stamping
Services, Digital Notaries

Software Update Services

NSA

22

… but are authorities trustworthy?

23

Authorities going bad

BobAlice

Respect my
Authoritah!

24

Authorities going bad

BobAlice

Respect my
Authoritah!

bad public key(s)

25

Authorities going bad

BobAlice

Respect my
Authoritah!

FAKE

FAKE

FAKE

bad public key(s)

26

Problems

1) Authorities are powerful and wide-spread

Examples:

- Any CA can issue certs for arbitrary domains
- Hundreds of CAs trusted by web browsers

27

2) Things go bad everywhere, all the time

Problems

Examples:

- Insider attacks
- Private key thefts
- Human error

- Hacking
- Compulsory key handover
- Side-channel attacks

28

3) Weakest-link security: authority systems are very fragile

Examples:

- Adversary (e.g. hacker, spy agency)
needs only one CA key to subvert
entire system

Problems

29

What if we could decentralise
 authority services?

30

Decentralising Authorities

from weakest-link

31

Decentralising Authorities

from weakest-link to strongest-link security

32

Decentralising Authorities

There are already many tools available:

- “Anytrust”: 1-of-k servers honest, all k live
- Byzantine replication: ⅔ honest, ⅔ live
- Threshold cryptography
- Multi-signature schemes

33

Decentralising Authorities

Trust-splitting (so far):

- Rare
- Challenging to implement
- Usually not scalable to large groups

34

Decentralising Authorities

Trust-splitting (so far):

- Rare
- Challenging to implement
- Usually not scalable to large groups

But:

- Is splitting across 5-10 servers enough
(e.g. against state-level adversaries)?

- Are participants truly independent and diverse?
- Who chooses the composition and how?

35

Cothorities
Large-scale collective authorities

36

Cothorities

Implement trust-splitting that is:

Scalable Secure Robust Flexible

37

Cothorities

Implement trust-splitting that is:

Scalable Secure Robust Flexible

First-step goal:
Generically improve security of any authority

independent of type or semantics.
38

Witness Cothorities

“Who watches the watchers?”

“Public witnesses!”

Witnesses

Respect my
Authoritah!

39

Witness Cothorities

“Who watches the watchers?”

“Public witnesses!”

CoSi: Collective Signing Protocol

- Authority: generate statements
- Witnesses:

- collective & proactive sanity-check
- contribute to collective signature

Witnesses

Respect my
Authoritah!

40

CoSi: Collective Signing

“The time is 3PM.”

“Gmail’s public key is X.”

“The latest version of Firefox is Z.”

“Bob’s public key is Y.”

Witnesses

Authority
(leader)

Witness
Cothority

41

Co-Signature

CoSi: Design

Builds on well-known crypto primitives:

- Merkle Trees
- Schnorr (Multi-)Signatures

42

CoSi: Design

Builds on well-known crypto primitives:

- Merkle Trees
- Schnorr (Multi-)Signatures

Scalability (to thousands of nodes) through:

- Communication trees
- Aggregation

E.g. as in scalable multicast protocols 43

Merkle Trees

g

e

a

f

dcb

b = H(x)a = H(w) c = H(y) d = H(z)

g = H(e || f)

e = H(a || b) f = H(c || d)

Merkle Tree hash
- hash trees
- verification of large data

structures in O(log n)
- signed top hash (STH):

efficient authentication
- used in many projects:

Git, ZFS, BitTorrent, Bitcoin,
Certificate Transparency, Tahoe-
LAFS, etc.

44

Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

Schnorr (Multi-)Signatures

45

Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

1. Commitment v1,V1 = gv1 v2,V2 = gv2 V = V1 * V2

Schnorr (Multi-)Signatures
S

ig
ni

ng

46

Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

1. Commitment v1,V1 = gv1 v2,V2 = gv2 V = V1 * V2

2. Challenge c c c = H(M || V)

Schnorr (Multi-)Signatures
S

ig
ni

ng

47

Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

1. Commitment v1,V1 = gv1 v2,V2 = gv2 V = V1 * V2

2. Challenge c c c = H(M || V)

3. Response r1 = v1 - k1c r2 = v2 - k2c r = r1 + r2

Schnorr (Multi-)Signatures
S

ig
ni

ng

48

Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

1. Commitment v1,V1 = gv1 v2,V2 = gv2 V = V1 * V2

2. Challenge c c c = H(M || V)

3. Response r1 = v1 - k1c r2 = v2 - k2c r = r1 + r2

Signature on M (c,r)

Schnorr (Multi-)Signatures
S

ig
ni

ng

49

Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

Signature on M (c,r)

1. Commitment recovery K = K1 * K2 V’ = grKc

Schnorr (Multi-)Signatures
V

er
ifi

ca
tio

n

50

Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

Signature on M (c,r)

1. Commitment recovery K = K1 * K2 V’ = grKc

2. Challenge recovery c’ = H(M || V’)

Schnorr (Multi-)Signatures
V

er
ifi

ca
tio

n

51

Signer 1 Signer 2 Verifier

Private/Public keys k1, K1 = gk1 k2, K2 = gk2

Signature on M (c,r)

1. Commitment recovery K = K1 * K2 V’ = grKc

2. Challenge recovery c’ = H(M || V’)

3. Decision c = c’

Schnorr (Multi-)Signatures
V

er
ifi

ca
tio

n

?

52

CoSi: Setup

7

5

21

6

43

K1,S1,
K1 = K1

K2,S2,
K2 = K2

K3,S3,
K3 = K3

K4,S4,
K4 = K4

K5,S5,
K5= K1K2K5

K6,S6,
K6= K3K4K6

K7,S7,
K7= K1...K7

Merkle Tree containing:

- Public key Ki

- Self-signed certificate Si

(using secret key ki)
- Aggregate public keys Ki

One-time verification costs: O(n)
On group change: O(|m-n|)

53

CoSi: Round

1. Announcement Phase

2. Commitment Phase

3. Challenge Phase

4. Response Phase
54

Merkle Tree containing:

- Commits Vi = gvi

- Aggregate commits Vi

Output:

- root hash = collective challenge c

CoSi: Commitment Phase

7

5

21

6

43

V1,V1 = V1

V5,
V5= V1V2V5

V6,
V6= V3V4V6

V7,
V7= V1...V7

V2,V2 = V2 V3,V3 = V3 V4,V4 = V4

c = H(…) Challenge

55

CoSi: Response Phase

7

5

21

6

43

r1,r1 = r1

r5,
r5= r1+r2+r5

r6,
r6= r3+r4+r6

r7,
r7= r1 + … + r7

Compute:

- Response ri = vi - kic
- Aggregate response ri

Outputs:

- Valid partial signatures (c,ri)
- Complete signature (c,r7)

r2,r2 = r2 r3,r3 = r3 r4,r4 = r4

56

The Availability Problem

- Assumption: server failures rare but non-negligible
- Availability loss
- DoS vulnerability if not addressed
- Persistently bad servers administratively handled

57

The Availability Problem

- Assumption: server failures rare but non-negligible
- Availability loss
- DoS vulnerability if not addressed
- Persistently bad servers administratively handled

Solutions: (work-in-progress)

- Exceptions (remove failing node from co-signing, notify client)
- Life insurance (based on VSS)

58

Cothority Implementation

59

- Implemented in Go:

- Cothority prototype: https://github.com/dedis/cothority
- Crypto library: https://github.com/dedis/crypto

- Schnorr multi-signatures based on Ed25519:

- AGL’s Go port of DJB’s optimised code

- Experiments on DeterLab

- Up to 8192 virtual CoSi nodes
- Multiplexed on top of up to 32 physical machines
- Latency: 100ms round-trip between two servers

Implementation

60

https://github.com/DeDiS/cothority
https://github.com/DeDiS/crypto

Experimental Results: Collective Signing Time

61

Experimental Results: Computation Costs

62

Cothority Applications
Let’s fix the Internet! :-)

63

Certificate Transparency

64

Certificate Transparency

CT
Cothority

“We co-sign the Signed Tree Head (STH).”

Witnesses

log server

IETF draft: https://datatracker.ietf.org/doc/draft-ford-trans-
witness/ 65

DNSSEC

ICANN / Verisign

“We sign the DNS root zone.”

66

DNSSEC

DNS
Cothority

TLD
Witnesses

ICANN / Verisign

“We co-sign the DNS root zone.”

67

Software Distribution

68

Software Distribution

“The latest version of Firefox X.y.z”

Witnesses

Mozilla

Update
Cothority

69

Reproducible Builds

“The latest reproducible build of Firefox X.y.z”

Witnesses

trusted server
reproduces the build

Update
Cothority

Mozilla

70

Tor

picture credit: http://jordan-wright.com/ 71

http://jordan-wright.com/

“We co-sign the Tor directory list.”

Relay
Witnesses

Onion
Cothority

Tor

72

Cryptocurrencies

73

Cryptocurrencies – Bitcoin-NG

74

1 2 3

10 sec

5

10 min

Key-Block

Micro-Block

depends on

Signature

4

Cryptocurrencies – BitCoSi

1 2 3

1 2 3 4 5

...

5-10 sec

Bitcoin
Cothority

Miner
Witnesses

Key-Block

Micro-Block

depends on

6

75

Co-Signature

… and many more applications …
(public randomness, git, … stay tuned!)

76

The Vision

Your CoNode

77

The Vision

Your CoNode

CA Cothority
Onion Cothority

78

Setup Your CoNode, Join the EPFL-Cothority!

$ curl https://api.github.com/repos/dedis/cothority/releases/latest \

| grep '"browser_download_url":' | awk -F\" '{ system("curl -L " $4) }' > conode-latest.tar.gz

$ tar -xvf conode-latest.tar.gz

$./start-conode.sh setup <ip-address>:<port>

$./stamp sign <file> # co-sign <file> through the EPFL-cothority

$./stamp check <file> # verify the signature of <file>

Send the generated public key key.pub to

https://groups.google.com/forum/#!forum/cothority

 and wait until we have verified your CoNode.

79

https://groups.google.com/forum/#!forum/cothority
https://groups.google.com/forum/#!forum/cothority

Cothorities build on well-known ideas:

- Distributed/Byzantine consensus
- Merkle Trees
- Threshold crypto
- Multi-signature schemes

But demonstrate how to do trust-splitting at scale:

- Strongest-link security
- Practical: demonstrated for 8000+ participants
- Efficient: < 2 seconds signing latency at scale

Conclusion

80

Thank you!

Don’t forget to check out:

http://arxiv.org/abs/1503.08768 (paper)

https://github.com/dedis/cothority (code)

https://groups.google.com/forum/#!forum/cothority (mailing list)
81

http://arxiv.org/abs/1503.08768
http://arxiv.org/abs/1503.08768
https://github.com/DeDiS/cothority
https://github.com/DeDiS/cothority
https://groups.google.com/forum/#!forum/cothority
https://groups.google.com/forum/#!forum/cothority

