Practical Cryptanalysis of the
Open Smart Grid Protocol
Dumb Crypto in Smart Grids

Philipp Jovanovic! (@daeinar)
Samuel Neves? (@sevenps)

1University of Passau, Germany

2University of Coimbra, Portugal

Fast Software Encryption 2015
Istanbul, Turkey

Smart Grids

; nuclear power plant
Factories e

= = & Thermal power plant

“L“l " ﬂi j4 hydraulic power

. q
Henewaue energy Photovoltaic
Cities and offices

e 4
ecological vehicle Wind generator

» Definition from Wikipedia:

“A smart grid is a modernized electrical grid that uses analog or digital
information and communications technology to gather and act on
information [...] in an automated fashion to improve the efficiency,

reliability, economics, and sustainability of the production and distribution
of electricity.”

» Fast-growing technology.

» Critical infrastructure: communication needs protection.

Open Smart Grid Protocol (OSGP)

Application layer communication protocol for smart grids.

Developed by the Energy Service Network Association (ESNA)
around 2010.

Standardised by the European Telecommunications Standards
Institute (ETSI) in 2012.

Used in devices sold by OSGP Alliance/Networked Energy
Services (NES).

Open Smart Grid Protocol (OSGP)

Source: http://www.networkedenergy.com/NESworldwide.php

» Deployed in over 4 million devices world-wide.

» Customers & Partners of OSGP Alliance/NES: E.ON, Vattenfall,
Ericsson AB, Mitsubishi Electric, LG CNS, Oracle, ...

http://www.networkedenergy.com/NESworldwide.php

Open Smart Grid Protocol (OSGP)

data concentrator

repeater

repeater repeater

[smart-meter] [smart—meter] [smart-meter} [smart-meter}

OSGP’s Network Topology

Message sizes in bytes: 114 (max), 84 (read), 75 (write).

Encrypted communication between smart-meters and data
concentrators.

Open Smart Grid Protocol (OSGP)

data concentrator

repeater

repeater

repeater

[smart-meter} [smart—meter} [smart-meter} [smart-meter}

OSGP’s Network Topology

Message sizes in bytes: 114 (max), 84 (read), 75 (write).

Encrypted communication between smart-meters and data
concentrators.

Authenticated encryption scheme:

Open Smart Grid Protocol (OSGP)

data concentrator

repeater

repeater

repeater

[smart-meter} [smart—meter} [smart-meter} [smart-meter}

OSGP’s Network Topology

Message sizes in bytes: 114 (max), 84 (read), 75 (write).
Encrypted communication between smart-meters and data
concentrators.

Authenticated encryption scheme:

RC4 (encryption)
OMADigest (authentication)
EN14908 (key derivation)

This Talk

Cryptanalysis of the OMADigest. Key recovery attacks using:

Differentials.
Bruteforce.
Differential-based forgeries.

Based on publicly available documents.
No experiments on actual (proprietary) OSGP hardware.
Disclosed to OSGP Alliance/NES in November 2014.

Related Work

By K. Kursawe and C. Peters (European Network for Cyber Security,
the Netherlands).

Overview article on security in OSGP.

Presents basic attacks.

Published on the IACR Cryptology ePrint Archive: Report 2015/088.
Disclosed to OSGP Alliance/NES in early 2014.

Related Work

By K. Kursawe and C. Peters (European Network for Cyber Security,
the Netherlands).

Overview article on security in OSGP.

Presents basic attacks.

Published on the IACR Cryptology ePrint Archive: Report 2015/088.
Disclosed to OSGP Alliance/NES in early 2014.

By L. Feiten and M. Sauer (University of Freiburg, Germany).
Transfers WEP attack on RC4 to the case of OSGP.

Under submission.

Draft shared privately.

Disclosed to OSGP Alliance/NES in November 2014.

OSGP’s Cryptographic Infrastructure

OSGP’s Cryptographic Infrastructure

kq X1 ko XO ky “ ko m ” n

EN14908 EN14908 OMADigest—|
64
|| ko

— ki

D 0% | ¢

RC4]

c t
ki || ko: Open Media Acces Key (OMAK). m || n: message and counter.
k{ || kj: Base Encryption Key (BEK). c, t: ciphertext and tag.

Xp, X1: constants.

The EN14908 “Encryption Algorithm”

9.12 Encryption Algorithm

The LonTalk encryption algorithm facilitates|one way encoding rather than real|
encrvption.IIt uses a|48-bit encryption key KJa variable length APDU, Allen], and a
64-bit input string R|to produce a|64-bit output string Y| Desirable properties of the
random number R are defined in 9.14. Any 48-bit number is a valid encryption key.

The encryption function is not published in this version of the specification.
Echelon has obtained expert advice on one way encryption functions. The advice is
that it is impossible to prove beyond any doubt that a function has no inverse.
Those who have seen the function as of June, 1994 believe it has no inverse, but
Echelon has been advised that it is more secure if it is not published. Nevertheless,
Echelon has, and shall continue to make the function available on a need to know
basis provided that there is written agreement to keep the function confidential.

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 67 of 112

Source: http://www.lonworks.org.cn/en/LonWorks/Lontalk),20Protocol’20Spec.pdf

http://www.lonworks.org.cn/en/LonWorks/Lontalk%20Protocol%20Spec.pdf

The EN14908 “Encryption Algorithm”

9.12 Encryption Algorithm

The LonTalk encryption algorithm facilitates|one way encoding rather than real|
encrvption.IIt uses a|48-bit encryption key KJa variable length APDU, Allen], and a
64-bit input string R|to produce a|64-bit output string Y| Desirable properties of the
random number R are defined in 9.14. Any 48-bit number is a valid encryption key.

The encryption function is not published in this version of the specification.
Echelon has obtained expert advice on one way encryption functions. The advice is
that it is impossible to prove beyond any doubt that a function has no inverse.
Those who have seen the function as of June, 1994 believe it has no inverse, but
Echelon has been advised that it is more secure if it is not published. Nevertheless,
Echelon has, and shall continue to make the function available on a need to know
basis provided that there is written agreement to keep the function confidential.

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 67 of 112

Source: http://www.lonworks.org.cn/en/LonWorks/Lontalk),20Protocol’20Spec.pdf

The OMADigest is an “improved” version of the EN14908
encryption algorithm.

http://www.lonworks.org.cn/en/LonWorks/Lontalk%20Protocol%20Spec.pdf

OMADigest

Function 0MADigest (m,k)
2+ (0,0,0,0,0,0,0,0)
m«m ” O—\m\ mod 144
foreach 144-byte block b of m do
for i < 0 to 17 do
for j «+ 7 to 0 do
if ki mod 12,7—j = 1 then
3j <= a(j41) mod 8 T beiy(7—j) + (—(aj +J)) < 1
else a; < a(y1) mod s + beiv(7—j) — (=(a; +j)) > 1
end
end
end
return a

64-bit state a.

Message is zero-padded: m s m || 0~Imlmod 144,

Key extension: ko || -+ || kiz— ko || <+ || ki1 || ko || -+ - || ks.
Processing of a message byte depends exactly on one key bit.
State update is almost linear.

Algorithm is fully reversible.

10

OMADigest

» Data processing:
ms;

.

ap ap ag ar

Fr— Fr— f, f f, Fre— Fr—

[[A A A [A
me;+7 mei+6 me;+5 meg;+4 me;+3 me;+2 Mgi41

data flow

» The non-linear update function f:

fk,c(x7y7 m) - {

» Note: i=0,...,17 and i = i mod 12.

y+m+(-(x+c))xl ifk=1
y+m—(-(x+¢c)) K7 otherwise.

11

Attack #1

Bitwise Key Recovery

> Injecting XOR-difference Amg; = 80:

il

S

R

00 00 00 00 00 00 00

fA, .7
Fe- _,2

gl

Fre— Fr- 1
i,7 0 i,6

data flow

» The non-linear update function f:

y+m+(-(x+e)xl ifk=1
y+m—(=(x+c)) <« 7 otherwise.

fk,c(Xay’ m) = {

» Note: i =0,...,17 and 7 = i mod 12.

13

Bitwise Key Recovery

» Difference propagation after processing mg;, ..., mgj17:
80
fk?o’7
8o}||{80}||{80}||{80 l{so}ll{so}ll{so}ll{so
|—{f}»i1 0 |—{fkly 1 |—{fkly 2||—{fk14,3 |_{fk1_3.4 |_{fk1_2.5 |—{fk'1>1,6
Y A Y

data flow

» The non-linear update function f:

y+m+(~(x+c) <l ifk=1
y+m—(=(x+¢c)) K7 otherwise.

fk,C(X7y7 m) = {

» Difference propagates with probability 1 to the full state!

14

Bitwise Key Recovery

Difference propagation after processing mg;, . .., mg;17, Mgi1g:
00
Fre- 7
8o}||{80}||{80}||{80 l{so}ll{so}ll{so}ll{mu
|—{sz,7'0 Lsz,s'l |_{fkl 2||—{/k1,4’3 |_{fkl‘3,4 |_{fkl‘2,5 |_{/km,|3
[[[[

data flow
Possible output differences for the XOR-linearisation of f:

A, _ JB1=80201=80& (80 <« 1) ifkio=1
T \co=80940 =80 (80 << 7) if ki =0

Equal behaviour of 1sb for & and +: 1sb(k;) = k; , = 1sb(Aay).

15

Bitwise Key Recovery

In 9641 queries with 144-byte chosen-plaintexts.

16

Can we do better?

Improving Bitwise Key Recovery

Setting Amg;_g = 80 (eight steps earlier as bitwise attack) gives:

i=].77 ey 6 ao al a as as as de ar
mgi—g 00 00 00 00 00 00 00 00
mgi_g 00 00 00 00 00 00 00 80
mgj_—1 80 80 80 80 80 80 80 80
mg; 80 80 80 80 80 80 80 Aay
mgj4+1 80 80 80 80 80 80 Aag ANa7
mgit7 NAay Aay Aa ANAas ANay Aas ANag Aay

18

Improving Bitwise Key Recovery

Setting Amg;_g = 80 (eight steps earlier as bitwise attack) gives:

I =].77 ,6 ao al a as as as de ar
mgi—g 00 00 00 00 00 00 00 00
mgi_g 00 00 00 00 00 00 00 80
mgj_—1 80 80 80 80 80 80 80 80

mg; 80 80 80 80 80 80 80 Aay
mgj4+1 80 80 80 80 80 80 Aag ANa7
mgit7 NAay Aay Aa ANAas ANay Aas ANag Aay

Analysing the XOR-linearisation of f shows ...

18

Bytewise Key Recovery

Key bits can be recovered iteratively
: o0 = 1sb(Aar) ki, = (Aa3) @ 1sb(Aay)
k: | = 1sb(Aag) @ 1sb(Aay) k; 5 = 1sb(Aa) @ 1sb(Aas)
kl 2= lsb(Aa5) S5 1Sb(A36) k7,6 = lsb(Aal) D lsb(Aaz)
k; 3 = 1sb(Aas) © 1sb(Aas) k; 7 = 1sb(Aap) © 1sb(Aa)

forall i =17,...,6 and i = i mod 12.

19

Bytewise Key Recovery

Key bits can be recovered iteratively
: o = 1sb(Aar) ki, = (Aa3) @ 1sb(Aay)
k: | = 1sb(Aag) @ 1sb(Aay) k; 5 = 1sb(Aa) @ 1sb(Aas)
kl 2= lsb(Aa5) S5 1Sb(A36) k7,6 = 1Sb(A31) D lsb(Aaz)
k; 3 = 1sb(Aas) © 1sb(Aas) k; 7 = 1sb(Aap) © 1sb(Aa)
forall i =17,...,6 and i = i mod 12.

Conclusion:

Setting Amgj_g = 80 leaks complete key byte k..

19

Bytewise Key Recovery

In 1241 queries with 144-byte chosen-plaintexts.

20

Attack #2

Known-Plaintext Key Recovery

Two 144-byte messages
m=x|yandm=x|y
with |y| =|y’| = r bytes and y # y'.
Corresponding digests
a=0(m) and & = O(m’")

with O being an oracle for the OMADigest using the key k.

22

Known-Plaintext Key Recovery
OMABackward

k3 k34 k5
- -— QJooooooo -— oboooog -— obgoogog -——a

mi20, - - -, M127 mygg, - - -, M35 mise, - - -, 1143

i=1 i=0
Mgy - - - s M7 Mg -+ Mizs Misg: - - - Mgz .
- — JOOO00o00 — Oooooooo — ooooogog —- b =af
k3 kf4 k5
OMAForward

For i=0,...,11, set r = 8i 4 16, guess k17— mod 12, and fix
k16—i mod 12 = 00 (note: key byte has no effect on processing of m).

Compute: b’ = OMAForward(0MABackward(a, m, k,r), m', k,r).
Check: b’' = 4’

If so, guess for ki7_; mod 12 IS saved as a candidate.

23

Known-Plaintext Key Recovery

In 24 queries of 144-byte known-plaintexts with common prefix.

In 12 4+ 1 queries of 144-byte chosen plaintexts.

24

Attack #3

Forgery Attacks

Injecting XOR-differences Amg;1; = 80 and Amgj, ;11 = 80

AR u PR

)
00 00 00 00 00 00 80

data flow
fori=0,...,17,i=imod 12, and j =0,...,7 (here: j =0).
The non-linear update function f:

y+m+(-(x+c)xl ifk=1
y+m—(=(x+c)) «7 otherwise.

fk,c(Xaya ’n) = {

26

Forgery Attacks

» Difference propagation after processing mgiyj, ..., Mgitjt7:

data flow

» No further propagation, stationary difference Aa; = 80.

27

Forgery Attacks

Difference propagation after processing mgij, . .., Mgitjt7, Mgitj+8:
Ax
fk?,0’7
00 00 00 00 00 00 00 Aary
|—{f’%,7'° Lfk1,6’1| |—{f’%,5*2| |—{f’%,4'3 |—{f’%,3"‘ |—{fk1,2’5 |—{f’%,1'6
[} [[

data flow

Inject XOR-difference Amgj;j1s = Ax s.t. Aa; = 00 = forgery!
How do we choose Ax?

28

From Forgeries ...

Options for Ax:

Ax Cco 40
k— =
T =0 T, 12 1

ke =1 Ax 01 03 o7 OF 1F 3F TF FF
By p 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/128

From Forgeries ...

Options for Ax:

Ax Cco 40
k— =
T =0 T, 12 1

ke =1 Ax 01 03 o7 OF 1F 3F TF
By p 1/2 1/4 1/8 1/16 1/32 1/64 1/128

FF
1/128

Using (AI’T’Ig,’_;,_j7 Amg,'+j+1, Am8/+j+8) = (80, 80, AX) with
Ax € {C0,40,01}

has probability =1/4 to create a forgery.

29

... to Key Recovery

Test (Amg,urj, Am3,~+j+1, Am3/+j+3) = (807 80, CO). Forgery?

Yes: Kit1mod12,j = 0.
No: Continue.

30

. to Key Recovery

Test (Amg,-ﬂ-, Am3,~+j+1, Am3/+j+3) = (807 80, CO). Forgery?

Yes: ki1 mod 12, = 0.
No: Continue.

Test (Amg;tj, Amgitjr1, Amgitjrg) = (80, 80,40). Forgery?

Yes: ki1 mod 12, = 0.
No: kit1 mod 12,j = 1.

30

Forgery-based Key Recovery

Summary

» Full key recovery in 168 queries (on average).

31

Forgery-based Key Recovery

Full key recovery in 168 queries (on average).

Works with chosen-plaintexts and with chosen-ciphertexts.
(due to stream cipher encryption)

31

Forgery-based Key Recovery

Full key recovery in 168 queries (on average).

Works with chosen-plaintexts and with chosen-ciphertexts.

(due to stream cipher encryption)

Key bits can be recovered in arbitrary order.
(unlike as in attacks #1 and #2)

31

Forgery-based Key Recovery

Full key recovery in 168 queries (on average).

Works with chosen-plaintexts and with chosen-ciphertexts.

(due to stream cipher encryption)

Key bits can be recovered in arbitrary order.
(unlike as in attacks #1 and #2)

No restrictions on the message size.

31

Conclusion

Overview on Digest Attacks

Attack Type B Queries Complexity Oracle
cP 1 13 2358 Tag-generation
CcP 2 7 210-58 Tag-generation
41 cP 3 5 218.00 Tag-generation
cP 4 4 225:58 Tag-generation
CcP 5 4 23358 Tag-generation
cP 6 3 241.00 Tag-generation
KP+ / CP 1 24/13 21058 Tag-generation
KP+ / CP 2 12/7 217:58 Tag-generation
4 KP+ / CP 3 8/5 225.00 Tag-generation
KP+ / CP 4 6/4 23258 Tag-generation
KP+ / CP 5 6/4 240:32 Tag-generation
KP+ / CP 6 4/3 248.58 Tag-generation
43 Forgeries (CP / CC, XOR) — =~ 168 ~ 168 Tag-verification
Forgeries (CP, Additive) — =~ 144 ~ 144 Tag-verification

B: time-query trade-off parameter.

KP+: known-plaintext with common prefix.

CP: chosen-plaintext.
CC: chosen-cipertext.

33

Fin

OSGP'’s cryptographic scheme offers no protection whatsoever.
(assuming it is implemented as in the specification)

Secure communication in OSGP highly doubtful as long as any of
RC4, EN14908 or OMAD:igest is used.

34

Fin

OSGP'’s cryptographic scheme offers no protection whatsoever.
(assuming it is implemented as in the specification)

Secure communication in OSGP highly doubtful as long as any of
RC4, EN14908 or OMAD:igest is used.

Thank youl!

34

