NORX8 and NORX16: AEAD for Low-End Systems

Jean-Philippe Aumasson¹ (@veorq) **Philipp Jovanovic**² (@daeinar) Samuel Neves³ (@sevenps)

> ¹Kudelski Security, Switzerland ²University of Passau, Germany ³University of Coimbra, Portugal

Rump Session Fast Software Encryption 2015 Istanbul, Turkey Overview

NORX32/64

- CAESAR candidate.
- Based on 32-/64-bit words.
- State sizes of 512/1024 bits.
- Proposed security levels: 128/256 bits.

NORX8/16

- New variants for low-end systems.
- Based on 8-/16-bit words.
- State sizes of 128/256 bits.
- Proposed security levels: 80/96 bits.

Overview

NORX32/64

- CAESAR candidate.
- Based on 32-/64-bit words.
- State sizes of 512/1024 bits.
- Proposed security levels: 128/256 bits.

NORX8/16

- ▶ New variants for low-end systems.
- Based on 8-/16-bit words.
- State sizes of 128/256 bits.
- Proposed security levels: 80/96 bits.

NORX8/16 - Layout

- monkeyDuplex construction.
- Process header, payload, trailer in one pass.
- Recommended parameter selections:

W	R	D	T	K	N	b	r	с
8	4 or 6	1	80	80	32	128	40*	88*
16	4 or 6	1	96	96	32	256	128	128

* Uses new security bounds from *Security of Keyed Sponge Constructions Using a Modular Proof Approach* by E. Andreeva, J. Daemen, B. Mennink, and G. Van Assche (FSE'15).

NORX8/NORX16 – The Permutation F^{R}

The Permutation G

$$\begin{array}{rrrr} 1: & a \longleftarrow \mathsf{H}(a,b) \\ 2: & d \longleftarrow (a \oplus d) \ggg r_0 \\ 3: & c \longleftarrow \mathsf{H}(c,d) \\ 4: & b \longleftarrow (b \oplus c) \ggg r_1 \\ 5: & a \longleftarrow \mathsf{H}(a,b) \\ 6: & d \longleftarrow (a \oplus d) \ggg r_2 \\ 7: & c \longleftarrow \mathsf{H}(c,d) \\ 8: & b \longleftarrow (b \oplus c) \ggg r_3 \end{array}$$

The Non-linear Operation H $H : \{0,1\}^{2n} \to \{0,1\}^n, (x,y) \mapsto (x \oplus y) \oplus ((x \land y) \ll 1)$ Rotation Offsets (r_0, r_1, r_2, r_3) 8-bit: (1,3,5,7) 16-bit: (8,11,12,15)

NORX8/16 - Misc

Estimations for HW Implementations

- ▶ NORX8: ≈ 1400 GE
- ► NORX16: ≈ 2900 GE

Preliminary Security Analysis

- Full diffusion after 2 rounds.
- ▶ No fixed-points G(a, b, c, d) = (a, b, c, d) except for all-zero. Equivalently: F^R.
- Upper bounds for differential characteristics (determined with the help of SAT-/SMT-solvers):

Ŵ	F^2 (perm)	F (init)	$F(init) + F^{6}(perm)$
	2 ⁻²⁹	2^{-32}	$\leq 2^{-119}$
16	2^{-37}	2^{-53}	$\leq 2^{-164}$

NORX8/16 - Misc

Estimations for HW Implementations

- ▶ NORX8: ≈ 1400 GE
- ► NORX16: ≈ 2900 GE

Preliminary Security Analysis

- ▶ Full diffusion after 2 rounds.
- ► No fixed-points G(a, b, c, d) = (a, b, c, d) except for all-zero. Equivalently: F^R.
- Upper bounds for differential characteristics (determined with the help of SAT-/SMT-solvers):

W	F^2 (perm)	F (init)	$F(init) + F^{6}(perm)$
8	2^{-29}	2^{-32}	$\leq 2^{-119} \ \leq 2^{-164}$
16	2^{-37}	2^{-53}	

Conclusion

- ▶ NORX8/16: AEAD for resource-constrained systems.
- ▶ Work-in-progress paper: TRUDEVICE, Grenoble, 2015-03-13.
- ► Call to arms: "cryptanalyse them!"

Thank you!