NORX

A Parallel and Scalable Authenticated Encryption Scheme

Jean-Philippe Aumasson ${ }^{1}$ (@veorq) Philipp Jovanovic ${ }^{2}$ (@daeinar)
Samuel Neves ${ }^{3}$ (@sevenps)
${ }^{1}$ Kudelski Security, Switzerland
${ }^{2}$ University of Passau, Germany
${ }^{3}$ University of Coimbra, Portugal
DTU Compute, Copenhagen July 31, 2014

Outline

1. Motivation
2. Specification of NORX
3. Analysis of NORX
4. Conclusion

What is Authenticated Encryption?

Authenticated Encryption?

Tr $\int_{\text {Passau }}^{\text {unversstät }}$
Non-AE

Alice

Authenticated Encryption?

Non-AE
$C=E_{K}($ Let's meet at 18:00)

Authenticated Encryption?

Non-AE
$C=E_{K}($ Let's meet at 18:00)

Authenticated Encryption?

Non-AE

$C=E_{K}$ (Let's meet at 18:00)
$D_{K}\left(C^{\prime}\right)=$ Let's meet at $20: 00$

Authenticated Encryption!

Tr $\int_{\text {Passau }}^{\text {unversstät }}$
AE

Bob

Alice

Authenticated Encryption!

AE
$(C, T)=A E E_{K}($ Let's meet at 18:00)

Authenticated Encryption!

AE
$(C, T)=A E E_{K}($ Let's meet at 18:00)

Authenticated Encryption!

AE
$(C, T)=A E E_{K}($ Let's meet at 18:00)

$$
A E D_{K}\left(C^{\prime}, T\right)=\left(P^{\prime}, T^{\prime}\right), T \neq T^{\prime}
$$

Authenticated Encryption

Types

- AE: ensure confidentiality, integrity, and authenticity of a message.
- AEAD: AE + ensure integrity and authenticity of associated data (e.g. routing information in IP packets).

Generic Composition

- Symmetric encryption algorithm (confidentiality)
- Message Authentication Code (MAC) (integrity)

Authenticated Encryption

Types

- AE: ensure confidentiality, integrity, and authenticity of a message.
- AEAD: AE + ensure integrity and authenticity of associated data (e.g. routing information in IP packets).

Generic Composition

- Symmetric encryption algorithm (confidentiality)
- Message Authentication Code (MAC) (integrity)

Crypto Disasters

Problems with Existing AEAD Schemes

- Interaction flaws: enc. \longleftrightarrow auth. (generic composition)
- Weak primitives (e.g. RC4)
- Broken modes (e.g. EAXprime)
- No misuse resistant solutions
- ...
- More examples: http://competitions.cr.yp.to/disasters.html
\Rightarrow Lots of room for improvements

Crypto Disasters

Problems with Existing AEAD Schemes

- Interaction flaws: enc. \longleftrightarrow auth. (generic composition)
- Weak primitives (e.g. RC4)
- Broken modes (e.g. EAXprime)
- No misuse resistant solutions
- ...
- More examples: http://competitions.cr.yp.to/disasters.html
\Rightarrow Lots of room for improvements ...
- Competition for Authenticated Encryption: Security, Applicability, and Robustness.
- Goals: Identify a portfolio of authenticated ciphers (one primitive) that
- offer advantages over AES-GCM (the current de-facto standard) and
- are suitable for widespread adoption.
- Overview:
- March 152014 - End of 2017
- 1st round: 57 submissions
- http://competitions.cr.yp.to/caesar.html

Further Information:

- AEZoo: https://aezoo.compute.dtu.dk
- Speed comparison: http://www1.spms.ntu.edu.sg/~syllab/speed

NORX

Overview of NORX

Main Design Goals

- High security
- Efficiency
- Simplicity
- Scalability
- Online
- Single pass
- Timing resistance
- High key agility

Overview of NORX

General

- Family of AEAD schemes
- Type: nonce-based stream cipher
> - Mode: (parallel) MonkeyDuplex (introduced with Keccak)
> - Core: LRX permutation (from ChaCha / BLAKE2, ARX-based)
> - Name: "NO(T A)RX"

General

- Family of AEAD schemes
- Type: nonce-based stream cipher
- Mode: (parallel) MonkeyDuplex (introduced with Keccak)
- Core: LRX permutation (from ChaCha / BLAKE2, ARX-based)
- Name: "NO(T A)RX"

General

- Family of AEAD schemes
- Type: nonce-based stream cipher
- Mode: (parallel) MonkeyDuplex (introduced with Keccak)
- Core: LRX permutation (from ChaCha / BLAKE2, ARX-based)
- Name: "NO(T A)RX"

Overview of NORX

Parameters

- Word size: $W \in\{32,64\}$ bits
- Number of rounds: $1 \leq R \leq 63$
- Parallelism degree: $0 \leq D \leq 255$
- Tag size: $|A| \leq 10 W$ (default: $4 W$ bits)
- Input: key K (4W bits), nonce $N(2 W$ bits), and message $M=H\|P\| T$ with H header, P payload, and T trailer.
- Output: encrypted payload C and authentication tag A.

Overview of NORX

Parameters

- Word size: $W \in\{32,64\}$ bits
- Number of rounds: $1 \leq R \leq 63$
- Parallelism degree: $0 \leq D \leq 255$
- Tag size: $|A| \leq 10 W$ (default: $4 W$ bits)

Encryption Mode

- Input: key K (4 W bits), nonce $N(2 W$ bits), and message $M=H\|P\| T$ with H header, P payload, and T trailer.
- Output: encrypted payload C and authentication tag A.

Overview of NORX

Proposed Instances

	NORXW-R-D	Key size	Tag size	Classification
1	NORX64-4-1	256	256	standard
2	NORX32-4-1	128	128	standard
3	NORX64-6-1	256	256	high security
4	NORX32-6-1	128	128	high security
5	NORX64-4-4	256	256	high throughput

arget Patorms

- NORX32: 8- to 32-bit CPUs, low-resource hardware - NORX64: 64-bit CPUs, high performance hardware

Proposed Instances

	NORXW-R-D	Key size	Tag size	Classification
1	NORX64-4-1	256	256	standard
2	NORX32-4-1	128	128	standard
3	NORX64-6-1	256	256	high security
4	NORX32-6-1	128	128	high security
5	NORX64-4-4	256	256	high throughput

Target Platforms

- NORX32: 8- to 32-bit CPUs, low-resource hardware
- NORX64: 64-bit CPUs, high performance hardware

MonkeyDuplex

The Encryption / Decryption Process

Figure: NORX in Sequential Mode ($D=1$)

The Encryption / Decryption Process

Figure: NORX in Parallel Mode $(D=2)$

The State

- NORX operates on a state of 16 W -bit sized words

	Size	Rate	Capacity
NORX32	512	320	192
NORX64	1024	640	384

- Arrangement of rate (data processing) and capacity (security) words:

s_{0}	s_{1}	s_{2}	s_{3}
s_{4}	s_{5}	s_{6}	s_{7}
s_{8}	s_{9}	s_{10}	s_{11}
s_{12}	s_{13}	s_{14}	s_{15}

Initialisation

- Load nonce, key and constants into state S :

u_{0}	n_{0}	n_{1}	u_{1}
k_{0}	k_{1}	k_{2}	k_{3}
u_{2}	u_{3}	u_{4}	u_{5}
u_{6}	u_{7}	u_{8}	u_{9}

- Parameter integration:

$$
s_{14} \leftarrow s_{14} \oplus(R \ll 26) \oplus(D \ll 18) \oplus(W \ll 10) \oplus|A|
$$

- Apply round permutation F^{R} to S

The Core Permutation F^{R}

The Permutation F

The Permutation G

$$
\begin{aligned}
& 1: a \longleftarrow(a \oplus b) \oplus((a \wedge b) \ll 1) \\
& 2: d \longleftarrow(a \oplus d) \ggg r_{0} \\
& 3: c \longleftarrow(c \oplus d) \oplus((c \wedge d) \ll 1) \\
& 4: b \longleftarrow(b \oplus c) \ggg r_{1} \\
& 5: a \longleftarrow(a \oplus b) \oplus((a \wedge b) \ll 1) \\
& 6: d \longleftarrow(a \oplus d) \ggg r_{2} \\
& 7: c \longleftarrow(c \oplus d) \oplus((c \wedge d) \ll 1) \\
& 8: b \longleftarrow(b \oplus c) \ggg r_{3}
\end{aligned}
$$

Rotation Offsets

- NORX32: $\left(r_{0}, r_{1}, r_{2}, r_{3}\right)=(8,11,16,31)$
\Rightarrow NORX64: $\left(r_{0}, r_{1}, r_{2}, r_{3}\right)=(8,19,40,63)$

Security Goals

Requirements for secure usage of NORX:

1. Unique nonces
2. Abort on tag verification failure

Expected security levels (in bits):

Security goal	NORX32	NORX64
Plaintext confidentiality	128	256
Plaintext integrity	128	256
Associated data integrity	128	256
Public message number integrity	128	256

Security Goals

Requirements for secure usage of NORX:

1. Unique nonces
2. Abort on tag verification failure

Expected security levels (in bits):

Security goal	NORX32	NORX64
Plaintext confidentiality	128	256
Plaintext integrity	128	256
Associated data integrity	128	256
Public message number integrity	128	256

Sponge Security Level

Classical Bound

$$
\min \left\{2^{c / 2}, 2^{|K|}\right\}
$$

- NORX designed towards this bound
- Usage exponent $e=2 W$, i.e. 64 and 128
- Minimal expected security levels $(c-e-1): 127$ and 255 bits

$$
\min \left\{2^{b / 2}, 2^{c}, 2^{|K|}\right\}
$$

- For nonce-based sponges in the ideal permutation model
- Also includes MORX with $D \neq 1$
- Effects: rate +2 W bits ($\approx+16 \%$ performance)

[^0]
Sponge Security Level

Classical Bound

$$
\min \left\{2^{c / 2}, 2^{|K|}\right\}
$$

- NORX designed towards this bound
- Usage exponent $e=2 W$, i.e. 64 and 128
- Minimal expected security levels $(c-e-1): 127$ and 255 bits

Improved Bound*

$$
\min \left\{2^{b / 2}, 2^{c}, 2^{|K|}\right\}
$$

- For nonce-based sponges in the ideal permutation model
- Also includes NORX with $D \neq 1$
- Effects: rate $+2 W$ bits ($\approx+16 \%$ performance)
* P. Jovanovic, A. Luykx, and B. Mennink, Beyond $2^{c / 2}$ Security in Sponge-Based Authenticated

Encryption Modes, Cryptology ePrint Archive: Report 2014/373

Performance of NORX

SW Performance (x86)

Platform	Implementation	cpb	MiBps
Ivy Bridge: i7 3667U @ 2.0 GHz	AVX	3.37	593
Haswell: i7 4770K @ 3.5 GHz	AVX2	2.51	1390

Table: NORX64-4-1 performance

SW Performance (ARM)

Platform	Implementation	cpb	MiBps
BBB: Cortex-A8 @ 1.0 GHz	NEON	8.96	111
iPad Air: Apple A7 @ 1.4 GHz	Ref	4.07	343

Table: NORX64-4-1 performance

SW Performance (SUPERCOP)

Etano	wintermute	sac	hy dra9	h6, dragon	nopa	misandy	gee	nosdy berery	hlmsps	
2episi281	2es128gemvi	morus540128v1	Exisi28]	Poratily	morus40128v1	morasty0128v1	morusstol28v1	maxkiativi	morusi280128v1	
tiosxinv1	ece 256 gcmyl	morusi280128v1	aioxinv1	mores640128v1	nora 324 1 vl	morusi280128v1	morus[290256v]	7x6+6iv1	morusi2801256v1	
acpis128	mextediv1	morusi 280256v1	pexist28	-orx 3241 w 1	haslsiv lov1	morusi280256v]	morus[280128v]	marx 2241 l (hslsiv lov1	
teq is256	mix 6461×1	mora $(+1 y 1$	criv256	(vorus1280128v1	$4{ }^{3}$	muraftaly	haslisivax	morx $6 \times 44 \times 1$	whicestuv1	
Eiamixaq12kv1	mars $32+1 \times 1$	2equal $12 \mathrm{R1}$	kizanceq $12 \mathrm{kv1}$	marn 1281256v1	mrorux 1280128 vi	nare 324 va	maratavi	menn26x 1		
moraa1280128v1	marti4/44*1	minacty	\|hiverv1		manis1280236v1	narkutivi	bhatsivv1	manus60128v1	nara 324.v1	
morus128028.6v1	morus 40128 va	Lesplit 28	Donsi280128v1	Estaslov1		\|hatsiviov 1	[2xon96v1		Weskil281	
Elverv.		norx324y 1	Heosy ymeq 128128 vx		Pesisi281	2es128gemv1	norx644.4v1	besl28gcmv1	hslsivel	
moras 640128 va	2sson96v1	2ugis256	feoxysmoq256128vi	Ecgisi28]	Whicoshtv1rar3frlti28	tiaoxinv1	nora32flvi	0ex256cmv1		
kiasuq 128×1	2seon128v1		kiesocq 128 v 1	Otsechtv1 mr3fit 1256	whecshtw/ 1 ar 3 Fri1256		[x+6\|v1	escon 128 y 1	serisl2 28	
doxaysmeq 12812 Bv 1	zesi 280ates 1	20al 28 Bcanv 1	morusi280256v1	mbecohivi nrijirlt 2 b	hislsivv1	\|whexshlv	mu3fl296	2ckisi281	pib4cipher 128v1	
deaxysmequ226128v1	ues1280tpv1	mors 6444×1	feoxyx<l 128128 v 1	buoxinv1	-0ntabiv	ecgis 1281	ackis 128	pib4cipher256x1		
2esi28genavt	2ec236otrw 1	2e256gemv1	panub50128v1	Regisi28	xigic1 28	Lea236gemv1	Exeni28v1	mal 2 Ratrw 1	-xgi2256	
20236genvi	2esjambuv1	2es128atisw 1	Pemysect25/12801	Plecechiv1 ari3ricios6		hictivev1	pibacipher2\%6vt	zeal28atpv1	fanotinv1	
Hooxyseq128128v1	2ec296otry v 1	Les128otrp v 1	Eesi2 $\mathrm{g}_{\text {gcmv1 }}$	bsldivel	ecri2256		pifacipher 128 vl	madsh $512 \mathrm{k} 256 \mathrm{n} 256110256 \mathrm{v1}$	norx 8444 vi	
2est128cpfov 1	\|omddhasi2ks12n296tu256v1	pi32cipher256v1	Ees12scpftv1	Eegi2956	best28gamvi		Lesik296	modsh2512ks12n2561w2266v	hslsivhiv!	
dooxyscq256128v1		pi32ciphar 128v1	6es256gcmv1	ces128gcmvl	bes256gmv1	2egis128	\|silvers]		arxekist	
monativil		202560trs 1	pe2566pftv1	Esslevhiv]	hslsiviviv!	nors $6+44 \times 1$	iocpole256av]	pi33ecipher256v1	aiverv1	
بca 256 cpffyl	stribob192ri	açambur 1	amatalv	mo2Sbycmvi	wheceshtv1 arsftr7256	eck i 2256	incpolel28av1	pi32cipher128v1	whecostev1 arSftr 7256	
Ethtel		20256atpu1	\|sl divkov1	xara $644 \mathrm{tv1}$	chat	hsl sivhiv1	ixepolec128v1	mayamuvi	yacti 12 kr 2	
motsivlov1		Kiasuneq1 128 V 1	Wheeshtiv1 mi3fri1128	Mreechtw1 minfinios	fo3	Kiasulimal 128 va		eeas Satav1	peat 28atrw1	
max 3241v1		2won9Gy 1	Whesutw 1 mi3fr1236	Was	bar	wreamtov2	Lesi 28 ceffol	exe2scotrvi	meal 2 Ratrpv 1	
Ehoestiv Imr 3 friti28	lomddha256k128	pi64cipher256v1	2anx 3241v1	Ebal	bbat	\|sream!0v1	pi32cipher 128v1		iscpok2562v1	
ahoeshtv Imr3frit296		pi64cipher 128 V 1	Imbitivt	5624	bbab	2son96v1	pi32cipher256v1	fradsh2266226n 104140160 v 1	iscpolel28v1	
haslivvi	omdda2256k256n248tu 256 pl	2ssoni28v1	wheeshtv1 mr 3 fr 3256	Stas	bbas	stream 22×2	2est280tasil	gradsh2256k128n96tur6tw1	iscpokl28zv1	
mins 6444 y 1	\|likokeyakv		\|kisweq128v1	hislsivel	pos 28 cppthw1	chos		yacs 128 v 2	medsh 256 k 128 m 95 tuu 128 v 1	bbal
xheocdivimis 3 fist256	xakcyakv1	Aritob 192r1	2arx 6242×1	tha	axs128cpithl	xxami 2×1	2cal 2botpv1	unds sh2 $256 \mathrm{k} 128 \mathrm{n} 96 \mathrm{tu} 96 \times 1$	ba3	
exan96. 1	ocankeyakx1	\|riviuov1	-xan\%6x1	fiverv 1	bir	iercamm $12{ }^{2}$	Fbi2		-6/2	
	Leajeav 1	iffedhesi 28al04v1	Eejj2mbav1	Wha	peaduea 128 cocbag len96v1	icream 12 v 1	khas	Likekeyakv1	bia?	
misiviliv	fivenkes akv1	fifedues 288 mofv 1		bas	Exdest1280xbuglen 128v1	pi6tcipher 2.6 V 1	cbal	Easkeylkv!	bot	
pibucipher256v1	ketijicv 1	likel.ey akv1	Wheestry 1 mrsfr 1256	-bab	alverv1	iscepolet 28 zv 1	\|cbat	tiviovv1	bbas	
tesfombuy	trivizOv1	riverkeyakv1	Estsivhiv1		Exadacs 128 cobtuplen 69 v 1	silvecr 1	cbos	tribob192r1	cbas	
stram10v2	2es128poctv losst	saskeyzkv1	Erearn10yl	20udesal2 2 ocblap kes64v1	bbas	iscpole256av]	cbas	pocankeyakv1	-bat	
xxamiov1		pil 6 ciphar096x\|	kramiov2	kradesal 2 2\%ochty kn9961	axadacal 92 oxblugicn96v1	ixpalel28v1	kbu?	pil fecipher096v1		
kcpole25fax	raci $28 \mathrm{pactz1g} \mathrm{fl} 128 \mathrm{mal}$	pil 6 ciphar 128x 1	3xan 128v1	कx ${ }^{4}$	axadacs1920xblug\|en 64 v 1	istramı14v2	kbut	pil 6 ciphar 28×1		
kepole 12 avav		Lixv11	cepolel2Riv1	,20e128.12	pexduec1920xtuglen $12 \mathrm{Rv1}$	iscream14v1	2eal 28 n8ctoev1	riverkegzivi	wexduec $128 \times \times$ tuglen 128.1	
xepole 128v1		kelijesv1	ecpole128.1	peulues 192 ochtag ken 128 v 1	thatD	Lees 128 cpforv 1	2est28al2clack 1	ketesal	pect28n8clacv 1	
25005128v1		Ocesinkeyalv 1	Espole256mv	Pezdeel192ocblafker96v1	y2es 128v2	kiaseq 128 l I	Leaddest 12 Sosbtuglen 128v1	ketejerv1	6sal28n12close	
Escemm12v2		dsoxyserq 128128 v 1	pi64cipher 256 vl	pezdesi92ocblafker64v1	norx644.v1	pi64cipher 128 el	2eadaes 12 20cblizglen96.1	Pesal28poetviass	meas6otrw 1	
strum 12 v -		keticipel	Eramm12v2	chal0	peadaes5560cblagien 128v1	2scon128v1	2eadass 12 2ocbltzelen 6 /v]	2est28poctll acsi 128	Sss128cpfbyl	
Esaream 12×2			erramal 2 v 1	audes256ocblap kon 128 va \|	exadacs560cblagien 54 vl	\|eses128otrsv	2est28si22silcv1.	best28pactul [f128mul	esconD6x1	

Source: http://www1.spms.ntu.edu.sg/~syllab/speed

```
NORX among the fastest CAESAR ciphers
Fastest Sponge-based scheme
Reference implementation has competitive speed, too
```


SW Performance (SUPERCOP)

Source: http://www1.spms.ntu.edu.sg/~syllab/speed

- NORX among the fastest CAESAR ciphers
- Fastest Sponge-based scheme
- Reference implementation has competitive speed, too

HW Performance (ASIC)

ASIC implementation and hardware evaluation by ETHZ students (under supervision of Frank K. Gürkaynak):

- Supported parameters: $W \in\{32,64\}, R \in\{2, \ldots, 16\}$ and $D=1$
- Targeted at high data throughput
- Technology: 180 nm UMC
- Frequency: 125 MHz
- Area requirements: 59 kGE
- NORX64-4-1 performance: $10 \mathrm{Gbps} \approx 1200 \mathrm{MiBps}$

Analysis of NORX

Analysis of NORX

The Non-Linear Operation H

$$
H:\{0,1\}^{2 n} \rightarrow\{0,1\}^{n},(a, b) \mapsto(a \oplus b) \oplus((a \wedge b) \ll 1)
$$

Properties

- "Approximation" of integer addition:

$$
a+b=(a \oplus b)+((a \wedge b) \ll 1)
$$

- Carries can only affect the next bit (effects on security?)
- Permutation on \mathbb{F}_{2}^{n} if one input argument is fixed
- Hardware efficiency++
- No SBoxes/integer additions: timing resistance in sw \& hw

Analysis of NORX

The Non-Linear Operation H

$$
H:\{0,1\}^{2 n} \rightarrow\{0,1\}^{n},(a, b) \mapsto(a \oplus b) \oplus((a \wedge b) \ll 1)
$$

Properties

- "Approximation" of integer addition:

$$
a+b=(a \oplus b)+((a \wedge b) \ll 1)
$$

- Carries can only affect the next bit (effects on security?)
- Permutation on \mathbb{F}_{2}^{n} if one input argument is fixed
- Hardware efficiency++
- No SBoxes/integer additions: timing resistance in sw \& hw

Analysis of NORX

Diffusion properties of F^{R} on 1-bit input differences:

	NORX32				ChaCha (32-bit)						
R	\min	\max	avg	median	\min	\max	avg	median			
1	83	280	179.222	181	73	294	182.195	185			
2	194	307	256.024	256	199	312	255.999	256			
3	198	312	255.995	256	204	313	255.988	256			
4	201	307	255.996	256	200	314	255.989	256			
	NORX64							ChaCha (64-bit)			
R	\min	\max	avg	median	\min	max	avg	median			
1	95	429	230.136	222	73	506	248.843	246			
2	440	589	511.982	512	430	591	512.013	512			
3	434	589	512.008	512	439	589	511.971	512			
4	428	589	511.986	512	435	585	512.008	512			

Full diffusion after F^{2} (as fast as ChaCha's!)
Diffusion test used in search for non-linear op. / rotation offsets

Analysis of NORX

Diffusion properties of F^{R} on 1-bit input differences:

	NORX32					ChaCha (32-bit)								
R	\min	\max	avg	median	\min	\max	avg	median						
1	83	280	179.222	181	73	294	182.195	185						
2	194	307	256.024	256	199	312	255.999	256						
3	198	312	255.995	256	204	313	255.988	256						
4	201	307	255.996	256	200	314	255.989	256						
	NORX64										ChaCha (64-bit)			
R	min	max	avg	median	min	max	avg	median						
1	95	429	230.136	222	73	506	248.843	246						
2	440	589	511.982	512	430	591	512.013	512						
3	434	589	512.008	512	439	589	511.971	512						
4	428	589	511.986	512	435	585	512.008	512						

- Full diffusion after F^{2} (as fast as ChaCha's!)
- Diffusion test used in search for non-linear op. / rotation offsets

Analysis of NORX
$\stackrel{\text { Tv }}{\text { TrI }} \int_{\text {PASSAU }}^{\text {universität }}$
0. Initialisation

NORX32 Diffusion

2. Diagonal Step

5. Column Step

0. Initialisation

NORX64 Diffusion

2. Diagonal Step

Figure: Diffusion Visualisation of F^{R}.

Analysis of NORX

NODE - The (NO)RX (D)ifferential Search (E)ngine*

- Framework for automatic search of differentials in F^{R}
- Examined differential propagation through H
- Uses constraint / SAT solvers (STP, Boolector, CryptoMiniSat)
- Available on GitHub: https://github.com/norx/NODE
- Best differential trails in F^{4} (full state):

$$
2^{-584} \text { (32-bit) and } 2^{-836} \text { (64-bit) }
$$

- Differential trail bounds for F (init., diffs in nonce only):
$<2^{-60}$ (32 bit) and $<2^{-53}$ (61 bit)
- Variant of NODE allowed us to break Wheesht and McMambo, two other CAESAR candidates
* J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Cryptology ePrint Archive:

Report 2014/317

Analysis of NORX

NODE - The (NO)RX (D)ifferential Search (E)ngine*

- Framework for automatic search of differentials in F^{R}
- Examined differential propagation through H
- Uses constraint / SAT solvers (STP, Boolector, CryptoMiniSat)
- Available on GitHub: https://github.com/norx/NODE
- Best differential trails in F^{4} (full state):

$$
2^{-584} \text { (32-bit) and } 2^{-836} \text { (64-bit) }
$$

- Differential trail bounds for F (init., diffs in nonce only)
$<2^{-60}$ (32 bit) and $<2^{-53}$ (61 bit)
Variant of NODE allowed us to break Wheesht and McMambo, two other CAESAR candidates
* J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Cryptology ePrint Archive: Report 2014/317

Analysis of NORX

NODE - The (NO)RX (D)ifferential Search (E)ngine*

- Framework for automatic search of differentials in F^{R}
- Examined differential propagation through H
- Uses constraint / SAT solvers (STP, Boolector, CryptoMiniSat)
- Available on GitHub: https://github.com/norx/NODE
- Best differential trails in F^{4} (full state):

$$
2^{-584} \text { (32-bit) and } 2^{-836} \text { (64-bit) }
$$

- Differential trail bounds for F (init., diffs in nonce only):

$$
<2^{-60} \text { (32-bit) and }<2^{-53} \text { (64-bit) }
$$

Variant of NODE allowed us to break Wheesht and McMambo, two other CAESAR candidates

* J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Cryptology ePrint Archive: Report 2014/317

Analysis of NORX

NODE - The (NO)RX (D)ifferential Search (E)ngine*

- Framework for automatic search of differentials in F^{R}
- Examined differential propagation through H
- Uses constraint / SAT solvers (STP, Boolector, CryptoMiniSat)
- Available on GitHub: https://github.com/norx/NODE
- Best differential trails in F^{4} (full state):

$$
2^{-584} \text { (32-bit) and } 2^{-836} \text { (64-bit) }
$$

- Differential trail bounds for F (init., diffs in nonce only):

$$
<2^{-60} \text { (32-bit) and }<2^{-53} \text { (64-bit) }
$$

- Variant of NODE allowed us to break Wheesht and McMambo, two other CAESAR candidates
* J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Cryptology ePrint Archive: Report 2014/317

Analysis of NORX

Algebraic Properties of G

	\#polynomials by degree					\#monomials				
W	3	4	5	6	7	8	\min	\max	avg	median
32-bit	2	6	58	2	8	52	12	489	242	49.5
64-bit	2	6	122	2	8	116	12	489	253	49.5

ANF of F: (direct) construction failed, compute server with 64 GB ran out of memory

High polynomial degree + big number of monomials + large state size: should increase difficulty to mount algebraic attacks

We also examined weak states, fixed points, rotational properties,

Analysis of NORX

Algebraic Properties of G

	\#polynomials by degree					\#monomials				
W	3	4	5	6	7	8	\min	\max	avg	median
32-bit	2	6	58	2	8	52	12	489	242	49.5
64-bit	2	6	122	2	8	116	12	489	253	49.5

- ANF of F: (direct) construction failed, compute server with 64 GB ran out of memory
- High polynomial degree + big number of monomials + large state size: should increase difficulty to mount algebraic attacks

[^1]
Analysis of NORX

Algebraic Properties of G

	\#polynomials by degree					\#monomials				
W	3	4	5	6	7	8	\min	\max	avg	median
32-bit	2	6	58	2	8	52	12	489	242	49.5
64-bit	2	6	122	2	8	116	12	489	253	49.5

- ANF of F: (direct) construction failed, compute server with 64 GB ran out of memory
- High polynomial degree + big number of monomials + large state size: should increase difficulty to mount algebraic attacks

Other Properties of F^{R}

We also examined weak states, fixed points, rotational properties, ...

	NORX	AES-GCM
High performance	yes (on many platforms)	depends (high with AES-NI)
High key agility	yes	no
Timing resistance	yes	no (bit-slicing, AES-NI required)
Misuse resistance	A+N $/$ LCP +X (exposes $P \oplus P^{\prime}$)	no (exposes K)
Parallelisation	yes	yes
Extensibility	yes (sessions, secret msg. nr., etc.)	no
Simple implementation	yes	no

Conclusion

- NORX superior to AES-GCM in many important points
- Fast on a broad range of architectures
- Resistance vs timing attacks in hw \& sw (no Int. add. \& no SBoxes)
- Our analysis found no security flaws
- Attacks only on reduced versions / single components
- NORX permutation probably a little bit weaker than ChaCha's
- Additional protection: MonkeyDuplex, restrictive initialisation
- NORX seems to have a good security margin
- However, much more (3rd party (!)) cryptanalysis required
- NORX superior to AES-GCM in many important points
- Fast on a broad range of architectures
- Resistance vs timing attacks in hw \& sw (no Int. add. \& no SBoxes)
- Our analysis found no security flaws
- Attacks only on reduced versions / single components
- NORX permutation probably a little bit weaker than ChaCha's
- Additional protection: MonkeyDuplex, restrictive initialisation

- NORX superior to AES-GCM in many important points
- Fast on a broad range of architectures
- Resistance vs timing attacks in hw \& sw (no Int. add. \& no SBoxes)
- Our analysis found no security flaws
- Attacks only on reduced versions / single components
- NORX permutation probably a little bit weaker than ChaCha's
- Additional protection: MonkeyDuplex, restrictive initialisation
- NORX seems to have a good security margin
- However, much more (3rd party (!)) cryptanalysis required

Further Information

$\leftarrow \rightarrow$ Q https://norx.io				
[NORX]	SPECS \& CODE	FEATURES	CONTACT	

$$
[S P E C S \& C O D E]
$$

NORX is not patented and freely available for all applications. Its source code is available under the cCO licence.

A list of 3rd party implementations and results on cryptanalysis can be found here.

[FEATURES]

https://norx.io

- J-P. Aumasson, P. Jovanovic, and S. Neves, NORX - A First Round Candidate in CAESAR
- J-P. Aumasson, P. Jovanovic, and S. Neves, NORX: Parallel and Scalable AEAD, European Symposium on Research in Computer Security (ESORICS 2014), Wroclaw, Poland
- J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Cryptology ePrint Archive: Report 2014/317
- P. Jovanovic, A. Luykx, and B. Mennink, Beyond $2^{c / 2}$ Security in Sponge-Based Authenticated Encryption Modes, Cryptology ePrint Archive: Report 2014/373

Comic by http://dilbert.com

Philipp Jovanovic @Daeinar
jovanovic@fim.uni-passau.de
https://norx.io

[^0]: P. Jovanovic, A. Luykx, and B. Mennink, Beyond $2^{c / 2}$ Security in Sponge-Based Authenticated

 Encryption Modes. Cryptology ePrint Archive: Report 2014/373

[^1]: We also examined weak states, fixed points, rotational properties,

