

Multi-Stage Fault Attacks Applications to the Block Cipher PRINCE

Philipp Jovanovic

Department of Informatics and Mathematics University of Passau

March 27, 2013

Outline

- 1. Motivation
- 2. The PRINCE Block Cipher
- 3. A Multi-Stage Fault Attack on PRINCE

Figure: Overview on the field of cryptology.

Multi-Stage Fault Attacks Philipp Jovanovic 3 / 33

Fields of Cryptanalysis

Figure: Overview on the different fields of cryptanalysis.

Multi-Stage Fault Attacks Philipp Jovanovic 4 / 33

Implementation Attacks

At a Glance ...

Implementation Attacks

At a Glance ...

At a Glance ...

Figure: http://xkcd.com/538

Multi-Stage Fault Attacks Philipp Jovanovic 5 / 33

Fields of Cryptanalysis

Figure: Overview on the different fields of cryptanalysis.

Multi-Stage Fault Attacks Philipp Jovanovic 6 / 33

Fields of Cryptanalysis

Figure: Overview on the different fields of cryptanalysis.

Multi-Stage Fault Attacks Philipp Jovanovic 6 / 33

Characteristics

- ► First appearances in 1998* and 2001[†].
- By injecting faults into the electronical circuit, the attacker tries to extract secret informations from the latter (e.g. a key).
- Lead to powerful new attack techniques and chip manufacturers were forced to rethink their designs.

- * E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems, In: Burton S. Kaliski Jr. (ed.) *CRYPTO* 1997, LNCS, vol. **1294**, Springer Heidelberg 1997, pp. 513–525.
- [†] D. Boneh, R.A. Demillo, R.J. Lipton, On the Importance of Eliminating Errors in Cryptographic Computations, Journal of Cryptology **14** (2001), 101–119.

Multi-Stage Fault Attacks Philipp Jovanovic 7 / 33

Characteristics

- ► First appearances in 1998* and 2001[†].
- By injecting faults into the electronical circuit, the attacker tries to extract secret informations from the latter (e.g. a key).
- Lead to powerful new attack techniques and chip manufacturers were forced to rethink their designs.

- * E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems, In: Burton S. Kaliski Jr. (ed.) *CRYPTO* 1997, LNCS, vol. **1294**, Springer Heidelberg 1997, pp. 513–525.
- [†] D. Boneh, R.A. Demillo, R.J. Lipton, On the Importance of Eliminating Errors in Cryptographic Computations, Journal of Cryptology **14** (2001), 101–119.

Multi-Stage Fault Attacks Philipp Jovanovic 7 / 3:

Characteristics

- First appearances in 1998* and 2001[†].
- By injecting faults into the electronical circuit, the attacker tries to extract secret informations from the latter (e.g. a key).
- Lead to powerful new attack techniques and chip manufacturers were forced to rethink their designs.

^{*} E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems, In: Burton S. Kaliski Jr. (ed.) *CRYPTO* 1997, LNCS, vol. **1294**, Springer Heidelberg 1997, pp. 513–525.

Multi-Stage Fault Attacks Philipp Jovanovic 7 / 33

[†] D. Boneh, R.A. Demillo, R.J. Lipton, On the Importance of Eliminating Errors in Cryptographic Computations, Journal of Cryptology **14** (2001), 101–119.

Techniques to Induce Faults

- Manipulation of the power-supply voltage to cause miscalculations.
- Manipulation of the circuit's clock.
- Parasitic charge-carrier generation by a laser beam.

Figure: www.riscure.com

Some Attacks using Fault Injections

- C. Aumueller et al. Fault Attacks on RSA With CRT: Concrete Results and Practical Countermeasures, CHES 2002.
- M. Mohamed, S. Bulygin and J. Buchmann, Improved Differential Fault Analysis of Trivium, COSADE 2011.
- M.S. Pedro, M. Soos and S. Guilley, FIRE: Fault Injection for Reverse Engineering, In: C.A. Ardagana and J. Zhou (eds.) Security and Privacy of Mobile Devices in Wireless Communication 2011.

Multi-Stage Fault Attacks Philipp Jovanovic 9 / 33

Overview

1. Motivation

2. The PRINCE Block Cipher

3. A Multi-Stage Fault Attack on PRINCE

Overview on Block Ciphers

Definition

Given a block size of n_1 bits and a key size of n_2 bits a block cipher is specified by an encryption function

$$E: \{0,1\}^{n_1} \times \{0,1\}^{n_2} \to \{0,1\}^{n_1}, (m,k) \mapsto c$$

and a decryption function

$$D: \{0,1\}^{n_1} \times \{0,1\}^{n_2} \to \{0,1\}^{n_1}, (c,k) \mapsto m$$

such that

$$D_k(E_k(m)) = m$$

for all plaintext messages $m \in \{0,1\}^{n_1}$ and all keys $k \in \{0,1\}^{n_2}$.

Overview on Block Ciphers

The PRINCE* Block Cipher

General Features

- Uses a 64-bit state and a 128-bit key.
- Based on the so-called FX construction.
- Core of the cipher is based on a Substitution-Permutation Network (SPN) and has 10 encryption rounds divided by a middle layer.
- Furthermore the core of PRINCE features the so-called α -reflection property. Due to this it holds that:

$$D_{(k_0||k_0'||k_1)}(\cdot) = E_{(k_0'||k_0||k_1 \oplus \alpha)}(\cdot)$$

where $\alpha = c0ac29b7c97c50dd$.

► This keeps the hardware costs low and produces only small overheads. (Applications: smart cards, sensor networks, "internet-of-things" etc.)

J. Borghoff et al., PRINCE – A Low-Latency Block Cipher for Pervasive Computing Applications, In: K. Sako and X. Wang (eds.) *ASIACRYPT* 2012, LNCS, vol. **7658**, Springer Heidelberg 2012, pp. 208–225.

The PRINCE Block Cipher

The 128-bit key k is split into two parts k_0 and k_1 of 64 bit each,

$$k = k_0 \parallel k_1$$

and extended to 192 bits by the following mapping:

$$(k_0 \parallel k_1) \mapsto (k_0 \parallel k_0' \parallel k_1) := (k_0 \parallel (k_0 >>> 1) \oplus (k_0 >> 63) \parallel k_1)$$

Figure: Layout of PRINCE.

Components of PRINCE

- k_i -add: The 64-bit subkey k_i is XORed to the state.
- S-Layer: All state nibbles are substituted using the 4-bit SBox below.

ſ	Х	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
ĺ	S[x]	В	F	3	2	A	С	9	1	6	7	8	0	E	5	D	4

Multi-Stage Fault Attacks

Components of PRINCE

- M / M'-Layer: The 64-bit state is multiplied with a 64 \times 64 matrix M resp. M', where $M = SR \circ M'$ and SR shifts row i of the state matrix cyclically to the left by i-1 nibbles.
- RC_i-add: A 64-bit round constant is XORed to the state.

i	RC_i
0-2	0000000000000000,13198a2e03707344,a4093822299f31d0
3 – 5	082efa98ec4e6c89, 452821e638d01377, be5466cf34e90c6c
6 – 8	7ef84f78fd955cb1,85840851f1ac43aa,c882d32f25323c54
9 – 11	64a51195e0e3610d, d3b5a399ca0c2399, c0ac29b7c97c50dd

Multi-Stage Fault Attacks

Overview

1. Motivation

2. The PRINCE Block Cipher

3. A Multi-Stage Fault Attack on PRINCE

Outline

- Obtain one (or more) pair(s) of correct and faulty ciphertexts c and c'.
- Use *Differential Fault Analysis* to examine the ciphertext pairs (c, c') and obtain informations about the secret key k.
- ▶ Repeat the above scheme if the attacked block cipher uses multiple independent subkeys, i.e. if $k = k_0 \parallel \cdots \parallel k_n$ and the k_i are not "connected" through a key schedule.

Recall: PRINCE uses two independent subkeys.

Outline

- Obtain one (or more) pair(s) of correct and faulty ciphertexts c and c'.
- Use *Differential Fault Analysis* to examine the ciphertext pairs (c, c') and obtain informations about the secret key k.
- ▶ Repeat the above scheme if the attacked block cipher uses multiple independent subkeys, i.e. if $k = k_0 \parallel \cdots \parallel k_n$ and the k_i are not "connected" through a key schedule.

Recall: PRINCE uses two independent subkeys.

Outline

- ▶ Obtain one (or more) pair(s) of correct and faulty ciphertexts c and c'.
- Use *Differential Fault Analysis* to examine the ciphertext pairs (c, c') and obtain informations about the secret key k.
- Repeat the above scheme if the attacked block cipher uses multiple independent subkeys, i.e. if $k = k_0 \parallel \cdots \parallel k_n$ and the k_i are not "connected" through a key schedule.

Recall: PRINCE uses two independent subkeys.

Multi-Stage Fault Attacks Philipp Jovanovic 17 / 33

Outline

- Obtain one (or more) pair(s) of correct and faulty ciphertexts c and c'.
- Use *Differential Fault Analysis* to examine the ciphertext pairs (c, c') and obtain informations about the secret key k.
- ▶ Repeat the above scheme if the attacked block cipher uses multiple independent subkeys, i.e. if $k = k_0 \parallel \cdots \parallel k_n$ and the k_i are not "connected" through a key schedule.

Recall: PRINCE uses two independent subkeys.

Multi-Stage Fault Attacks

More Questions

- How good does a fault injection need to be controllable by an attacker such that informations about the secret key can be derived?

18 / 33 Philipp Jovanovic

Multi-Stage Fault Attacks

More Questions

- How good does a fault injection need to be controllable by an attacker such that informations about the secret key can be derived?
- In other words: Can we use ciphertexts obtained from arbitrary faults or are there any requirements in order to produce "useful" faulty ciphertexts?

18 / 33 Philipp Jovanovic

Multi-Stage Fault Attacks

More Questions

- How good does a fault injection need to be controllable by an attacker such that informations about the secret key can be derived?
- In other words: Can we use ciphertexts obtained from arbitrary faults or are there any requirements in order to produce "useful" faulty ciphertexts?
- What exactly is Differential Fault Analysis and how does it work in the case of PRINCE?

Multi-Stage Fault Attacks

Requirements

Capabilities of an Attacker

- ► Known Plaintext Attack: We assume that the attacker is able to generate an arbitrary number of plaintext, (faulty) ciphertext triples (m, c, c').
- ► Kerckhoffs Principle or "The enemy knows the system": The design of the cipher is known to the adversary. (No security by obscurity)

Fault Models

- ► Temporal Resolution: Fault injection timing is controllable very precisely, i.e. injection after a specific operation of the cipher.
- Spatial Resolution: Injection effects a single nibble (4-bit value) of the whole state. The affected nibble itself is either known (model: RKF) or unknown (model: RUF).
- Effects: Injection changes the state nibble to a random and unknown 4-bit value.

Multi-Stage Fault Attacks Philipp Jovanovic 19 / 33

Requirements

Capabilities of an Attacker

- \triangleright Known Plaintext Attack: We assume that the attacker is able to generate an arbitrary number of plaintext, (faulty) ciphertext triples (m, c, c').
- ► Kerckhoffs Principle or "The enemy knows the system": The design of the cipher is known to the adversary. (No security by obscurity)

Fault Models

- Temporal Resolution: Fault injection timing is controllable very precisely, i.e. injection after a specific operation of the cipher.
- Spatial Resolution: Injection effects a single nibble (4-bit value) of the whole state. The affected nibble itself is either known (model: RKF) or unknown (model: RUF).
- Effects: Injection changes the state nibble to a random and unknown 4-bit value.

Multi-Stage Fault Attacks Philipp Jovanovic 19 / 33

A Multi-Stage Fault Attack on PRINCE

Where to Inject Faults?

Philipp Jovanovic 20 / 33

A Multi-Stage Fault Attack on PRINCE

Attack Stage 0

- Inject fault in $R_{\rm q}^{-1}$.
- Analyse fault propagation and ciphertext pairs.
- ▶ Obtain informations on $k'_0 \oplus k_1$.

Multi-Stage Fault Attacks

A Multi-Stage Fault Attack on PRINCE

Attack Stage 1

- Inject fault in R_8^{-1} .
- Analyse fault propagation and ciphertext pairs.
- Obtain informations on k₁.

Multi-Stage Fault Attacks

Requirements

Definition

Let $a = b_0 \parallel b_1 \parallel b_2 \parallel b_3$ be a 4-bit value and let $j \in \{0, \dots, 3\}$. Then we define the map:

$$\varphi: \mathbb{B}^4 \times \{0, \ldots, 3\} \longrightarrow \mathbb{B}^4, (a, j) \longmapsto \varphi_j(a)$$

where $\varphi_j(a)$ is equal to a but with the j-th bit b_j set to 0.

Bit Pattern

Requirements

Definition

Let $a=b_0\parallel b_1\parallel b_2\parallel b_3$ be a 4-bit value and let $j\in\{0,\ldots,3\}.$ Then we define the map:

$$\varphi: \mathbb{B}^4 \times \{0, \dots, 3\} \longrightarrow \mathbb{B}^4, (a, j) \longmapsto \varphi_j(a)$$

where $\varphi_j(a)$ is equal to a but with the j-th bit b_j set to 0.

Bit Pattern

j	$\varphi_j(a)$							
0	0	<i>b</i> ₁	b_2	<i>b</i> ₃				
1	b_0	0	b_2	b_3				
2	b_0	b_1	0	b_3				
3	b_0	b_1	b_2	0				

A Multi-Stage Fault Attack on PRINCE

Fault Propagation over 2 Rounds

Philipp Jovanovic 24 / 33

Fault Equations

Let v_i , v_i' , k_i and q_i be variables. We substitute the nibbles of correct and faulty ciphertexts (intermediate states) for v_i and v_i' , key nibbles for k_i and round constant nibbles for q_i .

$$E_i: SBox(v_i \oplus k_i \oplus q_i) \oplus SBox(v_i' \oplus k_i \oplus q_i) = \begin{cases} \varphi_{j_i}(w), & i \in \{0, \dots, 3\} \\ \varphi_{j_i}(x), & i \in \{4, \dots, 7\} \\ \varphi_{j_i}(y), & i \in \{8, \dots, 11\} \\ \varphi_{j_i}(z), & i \in \{12, \dots, 15\} \end{cases}$$

$$(j_i)_{i=0,\dots,15} = \begin{cases} (0,1,2,3,2,3,0,1,3,0,1,2,3,0,1,2), & I \in \{0,7,10,13\} \\ (3,0,1,2,1,2,3,0,2,3,0,1,2,3,0,1), & I \in \{1,4,11,14\} \\ (2,3,0,1,0,1,2,3,1,2,3,0,1,2,3,0), & I \in \{2,5,8,15\} \\ (1,2,3,0,3,0,1,2,0,1,2,3,0,1,2,3), & I \in \{3,6,8,12\} \end{cases}$$

Definition

For every fault eqaution E_i we introduce a key nibble candidate set S_i with

$$S_i = \{(t, u) \mid t, u \in \mathbb{B}^4\}$$

for $i \in \{0, \dots, 15\}$. Furthermore let $S = (S_i)_{i=0,\dots,15}$.

DFA Algorithm:

Input: (c, c') (intermediate state (v, v') for the 2nd stage)

Output: Set S containing candidates for $k'_0 \oplus k_1$ (or k_1 for the 2nd stage)

 $\textbf{return} \; \texttt{outer_filtering(inner_filtering(evaluation(\textit{\textbf{c}}, \textit{\textbf{c}}')))}$

Overview on the Single Steps

- \triangleright evaluation: Compute $E_i(u) = t$ for all $u \in \mathbb{B}^4$ and save the result (u,t)to the set S_i .

27 / 33 Philipp Jovanovic

27 / 33

Overview on the Single Steps

- \triangleright evaluation: Compute $E_i(u) = t$ for all $u \in \mathbb{B}^4$ and save the result (u,t)to the set S_i .
- inner filtering: Discard all tuples (u, t) from S_i where t doesn't match the pattern φ_{i} , associated with E_{i} .

Philipp Jovanovic

Overview on the Single Steps

- evaluation: Compute $E_i(u) = t$ for all $u \in \mathbb{B}^4$ and save the result (u, t) to the set S_i .
- inner_filtering: Discard all tuples (u, t) from S_i where t doesn't match the pattern φ_i associated with E_i .
- outer_filtering: Exploit the fact that the elements of the sets $S_{4\cdot m}, \ldots, S_{4\cdot m+3}$ are derived from a commen preimage to discard even more invalid tuples (u,t).

28 / 33

Example

Assume we have the following setup:

```
k = 01234567 89ABCDEF 01234567 89ABCDEF
```

m = 01234567 89ABCDEF

c = 0A72342A 02193229

c' = 21A19DCD 25D7433C

The faulty ciphertext c' was obtained by injecting the error value $e = 0 \times C$ into nibble s_0 of the state at the beginning of round R_9^{-1} .

Multi-Stage Fault Attacks Philipp Jovanovic

As a reminder we list again the possible index pattern below.

j		$\varphi_j(a)$											
0	0	<i>b</i> ₁	b_2	<i>b</i> ₃									
1	b_0	0	b_2	b_3									
2	b_0	b_1	0	b_3									
3	b_0	b_1	b_2	0									

Table: Distribution of key nibbles after evaluation (1st column) ...

S_i																
$\#S_0$	16	2	0	4	0	0	0	2	2	0	0	0	0	4	2	0
$\#S_1$	16	2	0	0	4	0	0	2	0	0	0	2	2	0	2	2
$\#S_2$	16	2	0	0	0	0	0	2	0	4	2	0	0	2	2	2
$\#S_3$	16	0	0	0	0	2	2	0	2	2	2	2	2	0	0	2

Apply the same technique to the other sets S_4, \ldots, S_{15} . As a result there remain only $2^{20} = 1.048.576$ from the initial 2^{64} candidates for $k'_0 \oplus k_1$.

As a reminder we list again the possible index pattern below.

j		$arphi_{m{j}}(m{a})$											
0	0	<i>b</i> ₁	b_2	<i>b</i> ₃									
1	b_0	0	b_2	b_3									
2	b_0	b_1	0	b_3									
3	b_0	b_1	b_2	0									

Table: ... after inner_filtering ...

S_i	\sum	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
$\#S_0$	8	2	0	4	0	0	0	2	0	0	0	0	0	0	0	0
$\#S_1$	4	2	0	0	0	0	0	0	0	0	0	2	0	0	0	0
#S ₀ #S ₁ #S ₂ #S ₃	8	2	0	0	0	0	0	0	0	4	0	0	0	2	0	0
$\#S_{3}$	8	0	0	0	0	0	2	0	2	0	2	0	2	0	0	0

Apply the same technique to the other sets S_4, \ldots, S_{15} . As a result there remain only $2^{20} = 1.048.576$ from the initial 2^{64} candidates for $k'_0 \oplus k_1$.

As a reminder we list again the possible index pattern below.

j		$\varphi_j(a)$											
0	0	<i>b</i> ₁	b_2	<i>b</i> ₃									
1	b_0	0	b_2	b_3									
2	b_0	b_1	0	b_3									
3	b_0	b_1	b_2	0									

Table: ... and after outer_filtering.

S_i	\sum	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
$\#S_0$	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0
$\#S_1$	2	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
$\#S_2$	4	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0
#S ₀ #S ₁ #S ₂ #S ₃	2	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0

Apply the same technique to the other sets S_4, \ldots, S_{15} . As a result there remain only $2^{20} = 1.048.576$ from the initial 2^{64} candidates for $k_0' \oplus k_1$.

Figure: Experimental results for stage 0 (left) and stage 1 (right). The data was obtained through 10.000 runs of the attack using fault model RUF.

Multi-Stage Fault Attacks Philipp Jovanovic 30 / 33

Table: Statistics for $k'_0 \oplus k_1$ and k_1 candidates after stage 0 and 1.

		staç	ge 0		stage 1					
# keys / # faults	1	2	3	4	1	2	3	4		
min	2 ^{17.00}	1	1	1	216.00	1	1	1		
max	2 ^{50.00}	2 ^{38.00}	2 ^{24.00}	2 ^{12.00}	2 ^{49.00}	2 ^{44.00}	2 ^{40.00}	2 ^{43.00}		
avg	230.89	211.44	2 ^{4.12}	21.47	230.41	2 ^{11.64}	2 ^{4.44}	2 ^{1.82}		
median	2 ^{34.50}	2 ^{19.50}	2 ^{12.50}	2 ^{7.00}	2 ^{33.50}	2 ^{21.50}	2 ^{21.00}	2 ^{21.00}		

Summary: In order to reconstruct the complete 128-bit key $k_0 \parallel k_1$ it is sufficient to inject approximately 3-4 faults.

Q: Can we apply Multi-Stage Fault Attacks to other ciphers?

A: Yes, indeed we can!

- We constructed an algorithm that can be used to analyse (SPN) block ciphers having independent subkeys using Multi-Stage Fault Attacks.
- Showed applications to PRINCE (this talk) and LED-128.
- To appear soon. (hopefully :-)

Multi-Stage Fault Attacks Philipp Jovanovic 32 / 33

Q: Can we apply Multi-Stage Fault Attacks to other ciphers?

A: Yes, indeed we can!

- We constructed an algorithm that can be used to analyse (SPN) block ciphers having independent subkeys using Multi-Stage Fault Attacks.
- Showed applications to PRINCE (this talk) and LED-128.
- To appear soon. (hopefully :-)

- Q: Can we apply Multi-Stage Fault Attacks to other ciphers?
- A: Yes, indeed we can!

- ► We constructed an algorithm that can be used to analyse (SPN) block ciphers having independent subkeys using Multi-Stage Fault Attacks.
- Showed applications to PRINCE (this talk) and LED-128.
- To appear soon. (hopefully :-)

Q: Can we apply Multi-Stage Fault Attacks to other ciphers?

A: Yes, indeed we can!

- ▶ We constructed an algorithm that can be used to analyse (SPN) block ciphers having independent subkeys using Multi-Stage Fault Attacks.
- Showed applications to PRINCE (this talk) and LED-128.
- ▶ To appear soon. (hopefully :-)

- Q: Can we apply Multi-Stage Fault Attacks to other ciphers?
- A: Yes, indeed we can!

- ▶ We constructed an algorithm that can be used to analyse (SPN) block ciphers having independent subkeys using Multi-Stage Fault Attacks.
- Showed applications to PRINCE (this talk) and LED-128.
- To appear soon. (hopefully :-)

Thank you for your attention!