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Implementation Attacks

At a Glance ...

Figure: http://xkcd.com/538
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Fault Attacks

Characteristics
I First appearances in 1998∗ and 2001†.
I By injecting faults into the electronical

circuit, the attacker tries to extract
secret informations from the latter
(e.g. a key).

I Lead to powerful new attack
techniques and chip manufacturers
were forced to rethink their designs.

∗ E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems, In: Burton S. Kaliski Jr.

(ed.) CRYPTO 1997, LNCS, vol. 1294, Springer Heidelberg 1997, pp. 513–525.

† D. Boneh, R.A. Demillo, R.J. Lipton, On the Importance of Eliminating Errors in Cryptographic Computations,

Journal of Cryptology 14 (2001), 101–119.
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Fault Attacks

Techniques to Induce Faults
I Manipulation of the power-supply

voltage to cause miscalculations.
I Manipulation of the circuit’s clock.
I Parasitic charge-carrier generation by a

laser beam.

Figure: www.riscure.com
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Fault Attacks

Some Attacks using Fault Injections
I C. Aumueller et al. Fault Attacks on RSA With CRT: Concrete Results

and Practical Countermeasures, CHES 2002.
I M. Mohamed, S. Bulygin and J. Buchmann, Improved Differential Fault

Analysis of Trivium, COSADE 2011.
I M.S. Pedro, M. Soos and S. Guilley, FIRE: Fault Injection for Reverse

Engineering, In: C.A. Ardagana and J. Zhou (eds.) Security and Privacy
of Mobile Devices in Wireless Communication 2011.
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Overview on Block Ciphers

Definition
Given a block size of n1 bits and a key size of n2 bits a block cipher is
specified by an encryption function

E : {0,1}n1 × {0,1}n2 → {0,1}n1 , (m, k) 7→ c

and a decryption function

D : {0,1}n1 × {0,1}n2 → {0,1}n1 , (c, k) 7→ m

such that

Dk (Ek (m)) = m

for all plaintext messages m ∈ {0,1}n1 and all keys k ∈ {0,1}n2 .
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Overview on Block Ciphers
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The PRINCE∗ Block Cipher

General Features
I Uses a 64-bit state and a 128-bit key.
I Based on the so-called FX construction.
I Core of the cipher is based on a Substitution-Permutation Network (SPN)

and has 10 encryption rounds divided by a middle layer.
I Furthermore the core of PRINCE features the so-called α-reflection

property. Due to this it holds that:

D(k0‖k ′0‖k1)(·) = E(k ′0‖k0‖k1⊕α)(·)

where α = c0ac29b7c97c50dd.
I This keeps the hardware costs low and produces only small overheads.

(Applications: smart cards, sensor networks, "internet-of-things" etc.)
∗ J. Borghoff et al., PRINCE – A Low-Latency Block Cipher for Pervasive Computing Applications, In: K. Sako

and X. Wang (eds.) ASIACRYPT 2012, LNCS, vol. 7658, Springer Heidelberg 2012, pp. 208–225.
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The PRINCE Block Cipher

The 128-bit key k is split into two parts k0 and k1 of 64 bit each,

k = k0 ‖ k1

and extended to 192 bits by the following mapping:

(k0 ‖ k1) 7→ (k0 ‖ k ′0 ‖ k1) := (k0 ‖ (k0 >>> 1)⊕ (k0 >> 63) ‖ k1)
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Figure: Layout of PRINCE.
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Components of PRINCE
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I ki -add: The 64-bit subkey ki is XORed to the state.
I S-Layer: All state nibbles are substituted using the 4-bit SBox below.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x ] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4
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Components of PRINCE
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I M / M’-Layer: The 64-bit state is multiplied with a 64× 64 matrix M resp.
M ′, where M = SR ◦M ′ and SR shifts row i of the state matrix cyclically
to the left by i − 1 nibbles.

I RCi -add: A 64-bit round constant is XORed to the state.
i RCi

0 – 2 0000000000000000, 13198a2e03707344, a4093822299f31d0
3 – 5 082efa98ec4e6c89, 452821e638d01377, be5466cf34e90c6c
6 – 8 7ef84f78fd955cb1, 85840851f1ac43aa, c882d32f25323c54

9 – 11 64a51195e0e3610d, d3b5a399ca0c2399, c0ac29b7c97c50dd
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What’s a Multi-Stage Fault Attack?

Outline
I Obtain one (or more) pair(s) of correct and faulty ciphertexts c and c′.
I Use Differential Fault Analysis to examine the ciphertext pairs (c, c′) and

obtain informations about the secret key k .
I Repeat the above scheme if the attacked block cipher uses multiple

independent subkeys, i.e. if k = k0 ‖ · · · ‖ kn and the ki are not
“connected” through a key schedule.

Recall: PRINCE uses two independent subkeys.
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Multi-Stage Fault Attacks

More Questions
I How good does a fault injection need to be controllable by an attacker

such that informations about the secret key can be derived?
I In other words: Can we use ciphertexts obtained from arbitrary faults or

are there any requirements in order to produce “useful” faulty ciphertexts?
I What exactly is Differential Fault Analysis and how does it work in the

case of PRINCE?
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Requirements

Capabilities of an Attacker
I Known Plaintext Attack: We assume that the attacker is able to generate

an arbitrary number of plaintext, (faulty) ciphertext triples (m, c, c′).
I Kerckhoffs Principle or “The enemy knows the system”: The design of the

cipher is known to the adversary. (No security by obscurity)

Fault Models
I Temporal Resolution: Fault injection timing is controllable very precisely,

i.e. injection after a specific operation of the cipher.
I Spatial Resolution: Injection effects a single nibble (4-bit value) of the

whole state. The affected nibble itself is either known (model: RKF) or
unknown (model: RUF).

I Effects: Injection changes the state nibble to a random and unknown 4-bit
value.
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A Multi-Stage Fault Attack on PRINCE

Where to Inject Faults?

x

k0 k1

RC0

R1

k1

RC1

R2

k1

RC2

R3

k1

RC3

R4

k1

RC4

R5

k1

RC5

S M’ S-1 R-1
6

k1

RC6

R-1
7

k1

RC7

R-1
8

k1

RC8

R-1
9

k1

RC9

R-1
10

k1

RC10RC11

k1 k′0

y

MS

RCi k1

M-1 S-1

RCjk1

Multi-Stage Fault Attacks Philipp Jovanovic 20 / 33



A Multi-Stage Fault Attack on PRINCE

Attack Stage 0
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I Inject fault in R−1
9 .

I Analyse fault propagation and ciphertext pairs.
I Obtain informations on k ′0 ⊕ k1.
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A Multi-Stage Fault Attack on PRINCE

Attack Stage 1
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I Inject fault in R−1
8 .

I Analyse fault propagation and ciphertext pairs.
I Obtain informations on k1.
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Requirements

Definition
Let a = b0 ‖ b1 ‖ b2 ‖ b3 be a 4-bit value and let j ∈ {0, . . . ,3}. Then we
define the map:

ϕ : B4 × {0, . . . ,3} −→ B4, (a, j) 7−→ ϕj(a)

where ϕj(a) is equal to a but with the j-th bit bj set to 0.

Bit Pattern

j ϕj(a)
0 0 b1 b2 b3
1 b0 0 b2 b3
2 b0 b1 0 b3
3 b0 b1 b2 0
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A Multi-Stage Fault Attack on PRINCE

Fault Propagation over 2 Rounds

k1

RCi

SR-1 M’ S-1,
k1

RCi+1

SR-1 M’ S-1,
k1

RCi+2

r

f f ϕ(f)
0

ϕ(f)
1

ϕ(f)
2

ϕ(f)
3

r + 1

w

x

y

z

w

x

y

z

ϕ(w)
0

ϕ(w)
1

ϕ(w)
2

ϕ(w)
3

ϕ(x)
2

ϕ(x)
3

ϕ(x)
0

ϕ(x)
1

ϕ(y)
3

ϕ(y)
0

ϕ(y)
1

ϕ(y)
2

ϕ(z)
3

ϕ(z)
0

ϕ(z)
1

ϕ(z)
2

Multi-Stage Fault Attacks Philipp Jovanovic 24 / 33



Differential Fault Analysis

Fault Equations
Let vi , v ′i , ki and qi be variables. We substitute the nibbles of correct and
faulty ciphertexts (intermediate states) for vi and v ′i , key nibbles for ki and
round constant nibbles for qi .

Ei : SBox(vi ⊕ ki ⊕ qi)⊕ SBox(v ′i ⊕ ki ⊕ qi) =


ϕji (w), i ∈ {0, . . . ,3}
ϕji (x), i ∈ {4, . . . ,7}
ϕji (y), i ∈ {8, . . . ,11}
ϕji (z), i ∈ {12, . . . ,15}

(ji)i=0,...,15 =


(0,1,2,3,2,3,0,1,3,0,1,2,3,0,1,2), l ∈ {0,7,10,13}
(3,0,1,2,1,2,3,0,2,3,0,1,2,3,0,1), l ∈ {1,4,11,14}
(2,3,0,1,0,1,2,3,1,2,3,0,1,2,3,0), l ∈ {2,5,8,15}
(1,2,3,0,3,0,1,2,0,1,2,3,0,1,2,3), l ∈ {3,6,8,12}
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Differential Fault Analysis

Definition
For every fault eqaution Ei we introduce a key nibble candidate set Si with

Si = {(t ,u) | t ,u ∈ B4}

for i ∈ {0, . . . ,15}. Furthermore let S = (Si)i=0,...,15.

DFA Algorithm:
Input: (c, c′) (intermediate state (v , v ′) for the 2nd stage)
Output: Set S containing candidates for k ′0 ⊕ k1 (or k1 for the 2nd stage)
return outer_filtering(inner_filtering(evaluation(c, c′)))
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Differential Fault Analysis
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Overview on the Single Steps
I evaluation: Compute Ei(u) = t for all u ∈ B4 and save the result (u, t)

to the set Si .
I inner_filtering: Discard all tuples (u, t) from Si where t doesn’t

match the pattern ϕji associated with Ei .
I outer_filtering: Exploit the fact that the elements of the sets

S4·m, . . . ,S4·m+3 are derived from a commen preimage to discard even
more invalid tuples (u, t).
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A Fault Attack on PRINCE

Example
Assume we have the following setup:

k = 01234567 89ABCDEF 01234567 89ABCDEF

m = 01234567 89ABCDEF

c = 0A72342A 02193229

c′ = 21A19DCD 25D7433C

The faulty ciphertext c′ was obtained by injecting the error value e = 0xC into
nibble s0 of the state at the beginning of round R−1

9 .
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A Fault Attack on PRINCE

As a reminder we list again the possible index pattern below.

j ϕj(a)
0 0 b1 b2 b3
1 b0 0 b2 b3
2 b0 b1 0 b3
3 b0 b1 b2 0

Table: Distribution of key nibbles after evaluation (1st column) ...

Si
∑

1 2 3 4 5 6 7 8 9 A B C D E F
#S0 16 2 0 4 0 0 0 2 2 0 0 0 0 4 2 0
#S1 16 2 0 0 4 0 0 2 0 0 0 2 2 0 2 2
#S2 16 2 0 0 0 0 0 2 0 4 2 0 0 2 2 2
#S3 16 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2

Apply the same technique to the other sets S4, . . . ,S15. As a result there
remain only 220 = 1.048.576 from the initial 264 candidates for k ′0 ⊕ k1.
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A Fault Attack on PRINCE

As a reminder we list again the possible index pattern below.

j ϕj(a)
0 0 b1 b2 b3
1 b0 0 b2 b3
2 b0 b1 0 b3
3 b0 b1 b2 0

Table: ... after inner_filtering ...

Si
∑

1 2 3 4 5 6 7 8 9 A B C D E F
#S0 8 2 0 4 0 0 0 2 0 0 0 0 0 0 0 0
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#S2 8 2 0 0 0 0 0 0 0 4 0 0 0 2 0 0
#S3 8 0 0 0 0 0 2 0 2 0 2 0 2 0 0 0

Apply the same technique to the other sets S4, . . . ,S15. As a result there
remain only 220 = 1.048.576 from the initial 264 candidates for k ′0 ⊕ k1.
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A Fault Attack on PRINCE
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Figure: Experimental results for stage 0 (left) and stage 1 (right). The data was
obtained through 10.000 runs of the attack using fault model RUF.
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A Fault Attack on PRINCE

Table: Statistics for k ′
0 ⊕ k1 and k1 candidates after stage 0 and 1.

stage 0 stage 1
# keys / # faults 1 2 3 4 1 2 3 4

min 217.00 1 1 1 216.00 1 1 1
max 250.00 238.00 224.00 212.00 249.00 244.00 240.00 243.00

avg 230.89 211.44 24.12 21.47 230.41 211.64 24.44 21.82

median 234.50 219.50 212.50 27.00 233.50 221.50 221.00 221.00

Summary: In order to reconstruct the complete 128-bit key k0 ‖ k1 it is
sufficient to inject approximately 3 – 4 faults.
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Outlook

Q: Can we apply Multi-Stage Fault Attacks to other ciphers?
A: Yes, indeed we can!

I We constructed an algorithm that can be used to analyse (SPN) block
ciphers having independent subkeys using Multi-Stage Fault Attacks.

I Showed applications to PRINCE (this talk) and LED-128.
I To appear soon. (hopefully :-)
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Fin

Thank you for your attention!
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