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Abstract. A fault-based attack on the new low-cost LED block cipher
is reported. Parameterized sets of key candidates called fault tuples are
generated, and filtering techniques are employed to quickly eliminate
fault tuples not containing the correct key. Experiments for LED-64 show
that the number of remaining key candidates is practical for performing
brute-force evaluation even for a single fault injection. The extension of
the attack to LED-128 is also discussed.
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1 Introduction

Ubiquitous computing is enabled by small mobile devices, many of which process
sensitive personal information, including financial and medical data. These data
must be protected against unauthorized access using cryptographic methods.
The strength of cryptographic protection is determined by the (in)feasibility of
deriving secret information by an unauthorized party (attacker). On the other
hand, the acceptable complexity of cryptographic algorithms implementable on
mobile devices is typically restricted by stringent cost constraints and by power
consumption limits due to battery life-time and heat dissipation issues. There-
fore, methods which balance between a low implementation complexity and an
adequate level of protection have recently received significant interest [4, 5].
Fault-based cryptanalysis [1] has emerged as a practical and effective tech-
nique to break cryptographic systems, i.e., gain unauthorized access to the se-
cret information. Instead of attacking the cryptographic algorithm, a physical
disturbance (fault) is induced in the hardware on which the algorithm is ex-
ecuted. Means to induce faults include parasitic charge-carrier generation by
a laser beam; manipulation of the circuit’s clock; and reduction of the circuit’s
power-supply voltage [3]. Most fault-based attacks are based on running the cryp-
tographic algorithm several times, in presence and in absence of the disturbance.
The secret information is then derived from the differences between the outcomes
of these calculations. The success of a fault attack critically depends on the spa-
tial and temporal resolution of the attacker’s equipment. Spatial resolution refers



to the ability to accurately select the circuit element to be manipulated; tem-
poral resolution stands for the capacity to precisely determine the time (clock
cycle) and the duration of fault injection. Several previously published attacks
make different assumptions about vulnerable elements of the circuit accessible
to the attacker and the required spatial and temporal resolutions [6, 8].

In this paper, we present a new fault-based attack on the LED block ci-
pher [10], a recently introduced low-cost cryptographic system specifically de-
signed for resource-constrained hardware implementations. The LED is a deriva-
tive of the Advanced Encryption Standard (AES) [2], but can be implemented
using less resources. We demonstrate that the 64-bit key version of the LED cipher
can still be broken by a fault attack that uses the same rather weak assumptions
on the spatial resolution as an earlier attack targeting AES [9] [11]. In the course
of the attack, relations between key bits are expressed by algebraic equations.
While the system of equations is significantly more complex than for AES, some
simplifications are sufficient to reduce the number of possible key candidates to
a value practical for brute-force analysis.

During the attack, sets of key candidates described by a parametrized data
structure called fault tuple are generated. Novel advanced filtering techniques
help to quickly identify (and discard) fault tuples which definitely do not cor-
respond to candidate sets containing the correct key. Experiments on a large
number of instances show that, when all filtering techniques are used, a single
fault injection is sufficient to break the cipher. The number of key candidates can
be further reduced by repeated fault injection. We also describe an extension of
the attack to the more expensive LED-128 cipher which assumes better control
of the circuit by the attacker.

The remainder of the paper is organized as follows. The 64-bit and 128-bit
versions of the LED cipher are described in the next section. The operation of
LED-64 with an injected fault is described in Section 3 and used to derive fault
equations. Techniques for generating and filtering the key candidates produced
by the attack are the subject of Section 4. Experimental results showing the
efficiency of the filtering techniques are reported in Section 5. Finally, Section 6
on variants of the attack and Section 7 containing our conclusions finish the

paper.

2 The LED Block Cipher

In this section we briefly recall the design of the block cipher LED, as specified
in [10]. It is immediately apparent that the specification of LED has many parallels
to the well-known block cipher AES. The LED cipher uses 64-bit blocks as states
and accepts 64- and 128-bit keys. Our main focus in this paper will be the
version having 64-bit keys which we will denote by LED-64. Other key lengths,
e.g. the popular choice of 80 bits, are padded to 128 bits by appending zeros
until the desired key length is reached. Depending on the key size, the encryption
algorithm performs 32 rounds for LED-64 and 48 round for LED-128. Later in
this section we will describe the components of such a round.



The 64-bit state of the cipher is conceptually arranged in a 4 x 4 matrix,
where each 4-bit sized entry is identified with an element of the finite field
Fi = Fo[X]/(X* + X + 1). In the following, we represent an element g € Fyg,
with ¢ = 3 X3 + 2 X2+ 1. X + ¢y and ¢; € Fq, by

g — callealle1]leo

Here || denotes the concatenation of bits. In other words, this mapping identifies
an element of F1g with a bit string. For example, the polynomial X3+ X +1 has
the coefficient vector (1,0, 1,1) and is mapped to the bit string 1011. Note that
we write 4-bit strings always in their hexadecimal short form, i.e. 1011 = B.

First, a 64-bit plaintext unit m is considered as a 16-fold concatenation of
4-bit strings mq || m1|| -+ || m1a || m15. Then these 4-bis strings are identified
with elements of 15 and arranged row-wise in a matrix of size 4 x 4:

mo M1 Mgz M3
my Mms Mg My
mg Mg Mip M1
Mi2 ™13 M14 M15

Likewise, the key is arranged in one or two matrices of size 4 x 4 over Fyg,
according to its size of 64 bits or 128 bits:

ko ki ks ks k16 k17 k1s k19
ks ks ke kr koo ko1 koo ko3
ks ko k1o k11 koy kos kag ko7
k12 k13 k14 k15 kag kog k3o k31

and possibly k=

Figure 1 below describes the way in which the encryption algorithm of LED
operates. It exhibits a special feature of this cipher — there is no key schedule.
On the one hand, this makes the implementation especially light-weight. On the
other hand, it may increase the cipher’s vulnerability to various attacks. Notice
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Fig. 1. LED key usage: 64-bit key (top) and 128-bit key (bottom).

that key additions are performed only after four rounds have been executed. The
authors of the original paper [10] call these four rounds a single Step. Key ad-
ditions are effected by the function AddRoundKey (AK). It performs an addition
of the state matrix and the matrix representing the key using bitwise XOR. It



is applied for input- and output-whitening as well as after every fourth round.
We remark again that the original keys are used without further modification as
round keys.

Now we examine one round of the LED encryption algorithm. It is composed of
several operations. Figure 2 provides a rough overview. All matrices are defined

AddConstants SubCells ShiftRows MixColumnsSerial
S[S|S|S
S[S|S|S T
4 cells sssTs
< s[s]|s]s s
4 cells

element of Fy4

Fig. 2. An overview of a single round of LED

over the field F14. The final value of the state matrix yields the 64-bit ciphertext
unit ¢ in the obvious way. Let us have a look at the individual steps.
AddConstants (AC). For each round, a round constant consisting of a tuple
of six bits (bs,bg, b3, ba,b1,bg) is defined as follows. Before the first round, we
start with the zero tuple. In consecutive rounds, we start with the previous
round constant. Then we shift the six bits one position to the left. The new
value of by is computed as bs + b4 + 1. This results in the round constants whose
hexadecimal values are given in Table 1. Next, the round constant is divided into

[Rounds] Constants |

[ 1-24 TJo1,03,07,0F,1F,3E,3D, 38,37, 2F, 1E, 3C, 39, 33,27, 0E, 1D, 34, 35, 2B, 16, 2C, 18, 30|
| 25-48 [21,02,05,08,17,2E,1C,38,31,23,06,0D, 1B, 36,2D, 14,34,29,12,24,08,11,22,04]

Table 1. The LED round constants.

x =105 || by || b3 and y = ba || b1 || bp where we interpret x and y as elements
of Fy¢. Finally, we form the matrix

0x00
1y00
2x00
3y00

and add it to the state matrix. (In the current setting, matrix addition is nothing
but bitwise XOR.)

SubCells (SC). Each entry x of the state matrix is replaced by the element
S[x] from the SBox given in Table 2. (This particular SBox was first used by the
block cipher PRESENT, see [5].)



Table 2. The LED SBox.

ShiftRows (SR). Fori =1,2,3,4, the i-th row of the state matrix is shifted
cyclically to the left by ¢ — 1 positions.

MixColumnsSerial (MCS). Each column v of the state matrix is replaced
by the product M - v, where M is the matrix?

4122
8656
BEAO
22FB

3 Fault Equations for LED-64

In this section we describe a way to cryptanalyze LED-64, the 64-bit version of the
LED block cipher, by fault induction. Our fault model assumes that an attacker
is capable of inducing a fault in a particular 4-bit entry of the state matrix at
a specified point during the encryption algorithm, changing it to a random and
unknown value. The attack is based on solving fault equations derived from
the propagation of this fault through the remainder of the encryption algorithm.
In the following we explain the construction of these fault equations.

The attack starts with a fault injection at the beginning of round r = 30.
The attacker then watches the error spread over the state matrix in the course
of the last three rounds. Figure 3 shows the propagation of a fault injected in the
first entry of the state matrix during the encryption. Every square depicts the
XOR difference of the correct and the faulty cipher state during that particular
phase of the last three encryption rounds.

In the end the attacker has two ciphertexts, the correct ¢ = ¢g || ... || c15
and the faulty ¢ = ¢ || ... || ¢i5, with ¢;, ¢; € F16. By working backwards from
this result, we construct equations that describe relations between ¢ and ¢’. Such
relations exist, because the difference between ¢ and ¢’ is due to a single faulty
state matrix entry at the beginning of round 30.

With the help of those equations we then try to limit the space of all possible
keys, such that we are able to perform a brute force attack, or in the best case,
get the secret key directly. Next, we discuss the method to establish the fault
equations.

! In the specification of LED in the original paper [10], the first row of M is given as
4 2 1 1. This appears to be a mistake, as the results computed starting with these
value do not match those presented for the test examples later in the paper. The
matrix M used here is taken from the original authors’ reference implementation
of LED and gives the correct results for the test examples.



r = 30

f f f £ 4f
AC sC SR MCS 8f>
Bf?
2f?
r =31
4f° 4f? a a 4a | 2d|2¢|1b
8f? AC 8f> sC b SR b MCS 8a | 6d | 5c | 6b
Bf’ Bf? < < Ba | 9d [ Ac | Eb
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Fig. 3. Fault propagation in the LED cipher.

3.1 Inversion of LED steps

We consider ¢ resp. ¢’ as a starting point and invert every operation of the
encryption until the beginning of round r = 30. The 4-bit sized elements k; with
0 < i < 15 of the key are viewed as indeterminates. The following steps list the
expressions one has to compute to finally get the fault equations.

1. AK™L: ¢; + k; and ¢} + k;

2. MCS™!: Use the inverse matrix

cCh4
3845
7T62E
D99D

M =

of the matrix M from the MCS operation to get the expressions
C- (Co+k0) +C (C4+k4)+D' (Cg-I—kg) +4 (C12+k12) resp.
C-(cy+ko)+C-(cy+ks)+D-(cg+ks)+4-(chy+ ki2).

Obviously the other expressions are computed in a similar way.

3. SR™!: As the operation only shifts the entries of the state matrix, the com-
puted expressions are unaffected.

4. sC~!: Inverting the SC operation results in

Sil(C . (Co + k‘o) +C- (C4 + k4) +D- (Cg + k‘g) + 4. (012 + k‘12)) resp.
STHC - (ch + ko) +C- () +ka) +D- (cg+ k) + 4 (cho + K12)).

where S~1 is the inverse of the LED SBox. The remaining expressions are
computed in the same way again.



3.2 Generation of fault equations

The XOR difference between the two related expressions, one derived from ¢ and
the other one from ¢/, is computed and identified with the corresponding fault
value, which can be read off the fault propagation in Figure 3 above. Thus we
get

4a=S"1(C-(co+ko)+C-(ca+Fky)+D
ST (ch + ko) +C-(cy +ka)+D

'(Cg+1€8)+4
(cg+ks)+4

(c12 + k12)) +
- (ha + K12)).

In summary one gets 16 fault equations for a fault injected at a particular
4-bit element of the state matrix at the beginning of round r = 30. For the rest
of the paper we will denote the equations by E, ;, where = € {a,b,c,d} identifies
the block the equation belongs to and i € {0, 1,2, 3} the number of the equation

as ordered below. Let us list those 16 equations.

4-a=5""(C-(co+ko)+C-(ca+ka)+D(cs+ks)+4-(c12+ki2)) +

STHC- (ch + ko) +C- (ch +ka) +D- (cg + ks) + 4+ (cly + ki12)) (Ea,0)
8-a=S5"(3-(cs+ks)+8 (cr+kr)+4-(c11+ki1)+5-(c15+ kis)) +

STHB - (ch +ka) + 8- (ch +kr) +4-(chy + ki) +5- (chs + ki) (Ea,1)
B-a=S "(7-(ca+ka)+6-(c6+ks)+2-(cio+ ko) +E- (c1a + k14)) +

STHT - (ch + k2) + 6 (cg + ko) + 2+ (¢lo + ko) +E- (chy + k14)) (Ea,2)
2-a=S8""0D (c1 +k1)+9-(cs+ks)+9-(co+ko)+D- (c13 + k13)) +

STHD - (] + k1) + 9 (ch + ks) + 9 (cg + ko) + D (ch5 + k13)) (Ea,3)
2-d=S""(C-(c1+k1)+C-(c5+ks)+D-(co+ko)+4-(c13+kiz)) +

STHC - () + k1) +C- (5 +ks) +D- (o + ko) +4- (13 + K13)) (Ea,0)
6-d=5S""(3-(co+ko)+8-(ca+ks)+4-(cg+ks)+5(c12+ki2)) +

5713 (ch + ko) + 8- (ch + ka) +4- (cg + ks) +5- (cha + ki12)) (Ea,1)
9-d=S""(7 (ca+ka)+6-(cr+kr)+2-(c11+Fki1)+E-(c15 + k1s)) +

STHT - (ch + k3) + 6 (cp +kr) +2- (¢ + k1) +E- (c)5 + kis)) (Ba,2)
B-d=S""(D-(co+ka)+9(c6+ke)+9-(cro+ kio) +D- (c1a + k1)) +

STHD - (ch + ko) + 9 (cg + ko) + 9 (cho + k10) + D - (chq + k14)) (Ea,3)
2. c=S7C (ca+ka) +C (c6 + k) + D (c10 + k10) + 4 - (c1a + k14)) +

STH(C - (¢h + ka) +C - (cg + k) +D - (cho + k10) +4- (¢l + k1)) (Ec0)
5.c=S5"'(3 (c1+ki)+8 (c5s+ks)+4-(co+ko)+5-(c13+ki3)) +

573 ¢y + k1) + 8- (c5 +ks) + 4 (co+ ko) +5- ()5 + ki) (Be,1)
Aoc=S8S"(7 (co+ko)+6 (ca+ks)+2 (cs+ks)+E-(cr2+ki2)) +

STHT - (ch + ko) + 6 (ch + k) +2- (cg + ks) +E- (cho + ki2)) (Ee,2)
Foc=S8"(D-(cs+ks)+9-(cr+Fkr)+9-(c11 4 ki1) +D- (c15 + k15)) +

STHD - (¢h + k3) +9 - (cf + kr) +9- (chy + ki1) +D- ()5 + k1s)) (Be,3)



1-b=5"1(C-(ca+ks)+C-(cr+ks)+D-(c11 +ki1) +4- (c15 + kis)) +

STHC - (ch + k) +C (¢ +k7) +D- (chy + k1) +4- (5 + k15)) (Eb0)
6-b=S""(3-(co+k2)+8(c6+ks)+4-(cro+kio)+5- (c1a + k1a)) +

STH3 - (chy + ko) + 8- (ch+ k) +4- (o + Fkio) +5- (chy + k1a)) (Ep.1)
E-b=S""(7T-(c1+k1)+6-(c5+ks)+2-(co+ko)+E- (c13 + k13)) +

STHT - (ch 4 k1) + 6 (ch + ks) + 2 (ch + ko) +E- (chg + ki3)) (Eb.2)
2:b=8""(D-(co+ko)+9 (ca+ka)+9-(cs+ks)+D-(ci2+ki2)) +

STHD - (ch + ko) + 9+ (ch +ka) + 9 (cg + k) +D- (chy + ki2)) (Eb.3)

Here the fault values a, b, ¢ and d are unknown and thus have to be considered
indeterminates. Of course, for a concrete instance of the attack, we assume that
we are given the correct ciphertext ¢ and the faulty ciphertext ¢’ and we assume
henceforth that these values have been substituted in the fault equations.

4 Key Filtering

The correct key satisfies all the fault equations derived above. Our attack is based
on quickly identifying large sets of key candidates which are inconsistent with
some of the fault equations and excluding these sets from further consideration.
The attack stops when the number of remaining key candidates is so small
that exhaustive search becomes feasible. Key candidates are organized using a
formalism called fault tuples (introduced below), and filters work directly on
fault tuples. The outline of our approach is as follows:

1. Key Tuple Filtering: Filter the key tuples and obtain the fault tuples to-
gether with their key candidate sets. (Section 4.1; this stage is partly inspired
by the evaluation of the fault equations in [9] and [11]).

2. Key Set Filtering: Filter the fault tuples to eliminate some key candidate
sets (Section 4.2).

3. Exhaustive Search: Find the correct key by considering every remaining
key candidate.

Details on the individual stages and the parameter choice for the attacks are
given below.

4.1 Key Tuple Filtering

In the following we let x be an element of {a,b,c,d} and i € {1,2,3,4}. Each
equation F,; depends on only four key indeterminates. In the first stage, we
start by computing for each equation E, ; a list S, ; of length 16. The j-th entry
of Sy, denoted Sy ;(j), is the set of all 4-tuples of values of key indeterminates
which produces the j-th field element as a result of evaluating equation E, ; at
these values. Notice that we have to check 16* tuples of elements of F;¢ in order
to generate one Sy ;(j). The computation of all entries S, ;(j) requires merely



16° evaluations of simple polynomials over F1¢. Since all entries are independent
from each other, the calculations can be performed in parallel using multiple
processors.

In the next step, we determine, for every z € {a,b,c,d} the set of possible
values j, of x such that Sy 0(js), Sz1(js); Sz2(jz) and Sy 3(j,) are all non-
empty. In other words, we are looking for j, which can occur on the left-hand
side of equations E o, Fy,1, Fz 2 and F, 3 for some possible values of key inde-
terminates. We call an identified value j, € Fi6 a possible fault value of x.

By combining the possible fault values of a,b,c,d in all available ways, we
obtain tuples t = (Ja, jd, je, jb) Which we call fault tuples of the given pair (¢, ).
For each fault tuple, we intersect those sets Sy ;(j,) which correspond to equa-
tions involving the same key indeterminates:

(Ko, ka, ks, k12) = Sa,0(ja) N Sa,1(ja) N Se2(je) N Sp3(db)
(k1, ks, kg, k13) = Sa,3(ja) N Sa0(ja) N Se,1(je) N Sp2(jb)
(ka, ke, k10, k14) : Sa2(ja) N Sa3(ja) N Seo0(je) N Sp1(js)
(k3, k7, k11, k15)  Sa,1(Ja) N Sa2(ja) N Se3(je) N Sholds)
By recombining the key values (ko, .. ., k15) using all possible choices in these

four intersections, we arrive at the key candidate set for the given fault tuple. If
the size of the key candidate sets is sufficiently small, it is possible to skip the
second stage of the attack and to search all key candidate sets exhaustively for
the correct key.

Each of the intersections in the above picture contains typically 2% — 28 el-
ements. Consequently, the typical size of a key candidate set is in the range
219 _ 9226 Unfortunately, often several fault tuples are generated. The key candi-
date sets corresponding to different fault tuples are necessarily pairwise disjoint
by their construction. Only one of them contains the true key, but up to now we
lack a way to distinguish the correct key candidate set (i.e. the one containing
the true key) from the wrong ones. Before we address this problem in the next
section, we illustrate the key set filtering by an example.

Ezxample 1. In this example we take one of the official test vectors from the LED
specification and apply our attack. It is given by

k = 01234567 89ABCDEF
m = 01234567 89ABCDEF
c = FDD6FB98 45F81456
¢/ = 51B8AB31 169AC161

where the faulty ciphertext ¢’ is obtained when injecting the error e = 8 in the
first entry of the state matrix at the beginning of the 30-th round. Although the
attack is independent of the value of the error, we use a specific one here in order
to enable the reader to reproduce our results. Evaluation of the fault equations
provides us with the following table:



a lo 1 2 3 4 5 6 7 8 9 A B C D E F
#S,000 20 20 0 0 0 0o 20 20 0 0 O
#S,10 0 0 0 0 0O 0 0 2"2Mp o 242 o0
#S,20 0 0 0 20 o0 20 2M2M0 0 0 0 O
#S.,30 0 280 280 282 2B 2o o 0 0 0 23

d 0 1 2 3 4 5 6 7 8 9 A B C D E F
#5010 2828280 0 0 20 0 28 2™ 0 280 o0
#S,110 283 2183218 94 g 9289 o o0 20 20 0 0
#Sa200 0 2%28 0 o0 280 28280 20 0 o0 2@
#5300 232180 2130 o0 2830 28280 280 o 28

clo 1 2 3 4 5 6 7 8 9 A B C D E F
#S.010 0 0 220 0 0 20 o0 2280 o0 2B
#S..00 230 0 0 0 0 28213213913 214g 93 g
#S.,0 280 0 o0 282" 2o 0 230 0 o0 283
#S.30 0 28280 0 0 0 2M2B g 213289 o 283

b0 1 2 3 4 5 6 7 8 9 A B C D E F
#S,00 0 0 280 280 0 o 20 280 280 2M
#S,110 0 0 0 212121 28980 20 0 0 0
#S,20 280 2218218309 280 0 0 2¥2¥0 0 0
#S,30 220 o0 2M2"0 0 0 0 0O O O 0 O

From this we see that there are two fault tuples, namely (9,2,8,5) and
(9,2,B,5). The corresponding key candidate sets have 224 and 223 elements,
respectively.

The problematic equations are obviously equations E.; for i € {0,1,2,3}.
There are two possible fault values, namely 8 and B. So far we have no way of
deciding which set contains the key and thus have to search through both of
them. Actually, in this example the correct key is contained in the candidates
set corresponding to the fault tuple (9,2,B,5).

4.2 Key Set Filtering

In the following we study the problem how to decide if a key candidate set
contains the true key or not.

Let x; € F16 with 7 € {0,4, 8,12} be the elements of the first column of the
state matrix at the beginning of round r = 31. The fault propagation in Figure 3
implies the following equations for the faulty elements x:

xy =xo +4Af Ty = xg +Bf’
) = vq +8f' Ty = 212 + 2f’

Next, let y; € F16 be the values that we get after adding the round constants to
the elements x; and plugging the result into the SBox. These values satisfy



S(z0+0) = yo S(zh+0)=yo+a
S(xa+1)=wya Sy +1)=ya+b
S(xs +2) =ys S(rg+2) =ys+c
S(z12 +3) = Y12 S(xiy+3) =y +d

Now we apply the inverse SBox to these equations and take the differences of
the equations involving the same elements y;. The result is the following system:

4f' =S (yo) + S (yo +a)
8f =5 (ys) + 5 (ya +b)
Bff = S (ys) + 5 ' (ys +¢)
2f" = S (y12) + S (Y12 + d)

Finally, we are ready to use a filter mechanism similar to the one in the
preceding subsection. For a given fault tuple (a,d, ¢, b), we try all possible values
of the elements y; and check whether there is one for which the system has a
solution for f’. Thus we have to check four equations over Fig for consistency.
This is easy enough and can also be done in parallel. If there is no solution
for f’, we discard the entire candidate set. While we are currently not using
the absolute values y; for the attack, we are exploring possible further speed-up
techniques based on these values.

4.3 Temporal and spatial aspects of the attack
The effect of the attack depends strongly on injecting the fault in round 30:

1. Injecting the fault at an earlier round does not lead to useful fault equations,
since they would depend on all key elements kg, ..., k15 and no meaningful
key filtering would be possible.

2. Injecting the fault in a later round results in weaker fault equations which
do not rule out enough key candidates to make exhaustive search feasible.

3. If the fault is injected in round 30 at another entry of the state matrix than
the first, one gets different equations. However, they make the same kind of
key filtering possible as the equations in Section 3. Thus, if we allow fault
injections at random entries of the state matrix in round 30, the overall time
complexity rises only by a factor of 16.

We experimented with enhancing the attack by level-2 fault equations which
go even further back in the fault history. These equations incorporate two inverse
SBoxes and depend on all parts ko, ..., k5 of the key. We determined experi-
mentally that they do not bring any speed-up compared to the exhaustive search
of remaining key candidates. Therefore, we do not report the details on these
equations.



4.4 Relation to AES

Several properties of LED render it more resistant to the fault-based attack pre-
sented in this paper, compared to AES discussed in [9] and [11]. The derived
LED fault equations are more complex than their counterparts for AES [9, 11].
This fact is due to the diffusion property of the MixColumnsSerial function,
which is a matrix multiplication that makes every block of the LED fault equa-
tions (E; ;) (Section 3.2) depend on all 16 key indeterminates. In every block we
have exactly one equation that depends on one of the key tuples (ko, k4, ks, k12),
(kl, ]{Z5, kg, klg), (kg, kﬁ, klo, k14), and (k?g, k7, kll; k15). In COIltI‘a,St, AES SkipS the
final MixColumns operation, and every block of its fault equations depends only
on four key indeterminates.

This observation yields an interesting approach to protect AES against the
fault attack from [9,11]. Adding operation MixColumns to the last round of AES
makes this kind of fault attack much harder, as the time for evaluating the AES
equations rises up to 232. Furthermore, as in the case of LED, it is possible that
several fault tuples have to be considered, further complicating the attack.

5 Experimental Results

In this section we report on some results and timings of our attack. The timings
were obtained on a 2.1 GHz AMD Opteron 6172 workstation having 48 GB
RAM. The LED cipher was implemented in C, the attack code in Python. We
performed our attack on 10000 examples using random keys, plaintext units and
faults. The faults were injected at the first element of the state matrix on the
beginning of round r = 30. On average, it took about 45 seconds to finish a single
run of the attack, including the key tuple filtering and the key set filtering. The
time for exhaustive search wasn’t measured at this point. The execution time of
the attack could be further reduced by using a better performing programming
language like C/C++ and parallelization.

Table 3 shows the possible number of fault tuples (#ft) that appeared during
our experiments and the relation between the number of occurrences and the
cases where fault tuples could be discarded by key set filtering (Section 4.2).
For instance, column 3 (#{t = 2) reports that there were 3926 cases in which
two fault tuples were found, and 1640 of them could be eliminated using key set
filtering.

#it |1 2 3 4 5 6 8 9 10 (12 |16 |18 |24 |36
occurred [2952|3926(351 |1887 307 1394 |15 |1 101 |39 |10 (14 |2
discarded 1640|234 |1410|1 268 1359 (14 |1 101 (38 |10 (14 |2

—_

Table 3. Efficiency of key set filtering.



It is clear that key set filtering is very efficient. Especially if many fault tuples
had to be considered, some of them could be discarded in almost every case. But
also in the more frequent case of a small number of fault tuples there was a
significant gain. Figure 4 shows this using a graphical representation. (Note the
logarithmic y scale.) Altogether, in about 29.5% of the examples there was a
unique fault tuple, in another 29.6% of the examples there were multiple fault
tuples, none of which could be discarded, and in about 40.9% of the example
some of the fault tuples could be eliminated using key set filtering.

10000

#occurrences

—
# discards mm—

1000 £

100

i+ 2 3 4 5 6 8 9 10 12 16 18 24 36
#fault tuples

Fig. 4. Efficiency of key set filtering (logarithmic y scale).

Finally, it is interesting to see how many fault tuples can be discarded on
average. These values are collected in Table 4.

#ft 2 3 4 5 6 8 9 10 (12 |16 |18 (24 |36
gdiscarded|0.4 (0.9 |1.4 |2.0 |2.5 |3.6 |3.7 [5.0 |6.1 |8.4 [8.4 |12.6|24.0

Table 4. Average number of discards

6 Extensions of the Attack

In this section we discuss some improvements and extensions of the attack in-
troduced in Section 4.

6.1 Multiple Fault Injection

It is possible to further reduce the key space by running the attack a second time
with the same key but a different plaintext. After the second attack, all sets of



key candidates from the first and the second attack are intersected pairwise.
This eliminates many “wrong” candidate sets and greatly reduces the number of
candidates in the correct one. The following example illustrates this technique.

Ezample 2. We repeat the attack from Example 1 with the same key k and a
different plaintext m:

k = 01234567 89ABCDEF
m = 10000000 10000000
c = 04376B73 063BC443
¢/ = OE8F2863 17C57720

Again the error e = 8 is injected at the first entry of the state matrix at the
beginning of round r = 30. The key filtering stage returns two fault tuples
(5,7,7,5) and (5,9,7,5), both having key candidate sets of size 22°.

Now we form the pairwise intersections of the key candidate sets of the first
and second run. The only non-empty one contains a mere 8 key candidates from
which the correct key is found almost immediately.

Note that repeating an attack may or may not be feasible in practice. Ex-
periments demonstrate that our technique works using a single attack; several
attacks just further reduce the set of key candidates on which to run an exhaus-
tive search.

6.2 Extension of the attack for LED-128

LED-128 uses a 128-bit key which is split into two 64-bit keys k and k used
alternatingly as round keys. Since k and k are independent from each other,
a straightforward application of the procedure from Section 3 would result in
fault equations with too many indeterminates to allow sufficient key filtering.
Unlike AES (where reconstructing the last subkey allows the derivation of all
other subkeys from the key schedule [9]), LED-128 inherently resists the fault
attack under the assumptions of this paper.

Still, LED-128 is vulnerable to a fault attack if we assume that the attacker
has the capability assumed in previous literature ([7], p. 298). If the key is stored
in a secure memory (EEPROM) and transferred to the device’s main memory
when needed, the attacker may reset selected bytes of the key, i.e., assign them
the value of 0, during the transfer from the EEPROM to the memory. If we
can temporary set, using this technique, the round key k to zero (or any other
known value) and leave k unchanged, then a simple modification of our attack
can derive k. Using the knowledge of k£, we mount a second fault attack without
manipulating k. This second attack is another modification of our attack and is
used to determine k.



7 Conclusions and Future Work

We demonstrated that the LED-64 block cipher has a vulnerability to fault-
based attacks which roughly matches AES. The improved protection mechanisms
of LED can be overcome using clever manipulation of sub-sets of key candidates,
described by fault tuples. LED-128 is more challenging, even though its strength
collapses if the attacker has the ability to set one half of the key bits to a
known value (e.g., during the transfer from a secure memory location). In the
future, we plan to implement LED in hardware and to study attacks using a
fault-injection framework. We are interested in investigating the effectiveness of
hardware protection mechanisms in detecting and preventing attempted attacks.
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