Algebraic Attacks Using SAT-Solvers

Philipp Jovanovic and Martin Kreuzer

Fakultat fiir Informatik und Mathematik
Universitiat Passau
D-94030 Passau, Germany

Abstract. Algebraic attacks lead to the task of solving polynomial sys-
tems over Fo. We study recent suggestions of using SAT-solvers for this
task. In particular, we develop several strategies for converting the poly-
nomial system to a set of CNF clauses. This generalizes the approach
in [4]. Moreover, we provide a novel way of transforming a system over Fae
to a (larger) system over Fa. Finally, the efficiency of these methods is
examined using standard examples such as CTC, DES, and Small Scale
AES.

Key words: algebraic cryptanalysis, SAT solver, AES, polynomial system
solving

1 Introduction

The basic idea of algebraic cryptanalysis is to convert the problem of breaking a
cypher to the problem of solving a system of polynomial equations over a finite
field, usually a field of characteristic 2. A large number of different approaches
has been developed to tackle such polynomial systems. For an overview of some
approaches see [12].

In this note we examine a recent suggestion, namely to convert the system to
a set of propositional logic clauses and then to use a SAT-solver. The first idea
in this direction was presented in [16]. In [8], the SAT-solver technique was suc-
cessfully applied to attack 6 rounds of DES. The first study of efficient methods
for converting boolean polynomial systems to CNF clauses was presented in [4]
where the following procedure was suggested:

(1) Linearise the system by introducing a new indeterminate for each term in
the support of one of the polynomials.

(2) Having written a polynomial as a sum of indeterminates, introduce new
indeterminates to cut it after a certain number of terms. (This number is
called the cutting number.)

(3) Convert the reduced sums into their logical equivalents using a XOR-CNF
conversion.

Later this study was extended slightly in [5], [3], and [18] but the procedure
was basically unaltered. Our main topic, discussed in Section 2 of this paper,

is to examine different conversion strategies, i.e. different ways to convert the
polynomial system into a satisfiability problem. The crucial point is that the
linearisation phase (1) usually produces too many new indeterminates. Our goal
will be to substitute not single terms, but term combinations, in order to save
indeterminates and clauses in the CNF output.

For certain cryptosystems such as AES (see [9]) or its small scale variants
(see [6]), the polynomial systems arising from an algebraic attack are naturally
defined over a finite extension field Fae of Fo, for instance over Fqg or Fosg. While
it is clear that one can convert a polynomial system over Fse to a polynomial
system over Fy by introducing additional indeterminates, it is less clear what
the best way is to do this such that the resulting system over Fa allows a good
conversion to a SAT problem. An initial discussion of this question is contained
in [2]. Although the algorithm we present in Section 3 is related to the one given
there, our method seems to be easier to implement and to allow treatment of
larger examples.

In the last section we report on some experiments and timings using the
first author’s implementation of our strategies in the ApCoCoA system (see [1]).
By looking at the Courtois Toy Cipher (CTC), the Data Encryption Standard
(DES), and Small Scale AES, we show that a suitably chosen conversion strategy
can save a substantial amount of logical variables and clauses in the CNF output.
The typical savings are in the order of 10% of the necessary logical variables
and up to 25% in the size of the set of clauses. Frequently, the benefit is then a
significant speed-up of the SAT-solvers which are applied to these sets of clauses.
Here the gain can easily be half of the execution time or even more. We shall also
see that, in the cases we examined, a straightforward Grobner basis approach to
solving polynomial systems over s is slower by several orders of magnitude.

This paper is based on the first author’s thesis [11]. Unless explicitly noted
otherwise, we adhere to the definitions and notation of [13] and [14].

2 Converting Boolean Polynomials to CNF Clauses

In this section we let Fy be the field with two elements and f € Fa[zy, ..., z,)
a polynomial. Usually f will be a boolean polynomial, i.e. all terms in the
support of f will be squarefree, but this is not an essential hypothesis. Let
M = {Xy,...,X,} be a set of boolean variables (atomic formulas), and let M
be the set of all (propositional) logical formulas that can be constructed from
them, i.e. all formulas involving the operations —, A, and V.

The following definition describes the relation between the zeros of a poly-
nomial and the evaluation of a logical formula.

Definition 1. Let f € Fylzy,...,2,] be a polynomial. A logical formula F € M
is called a logical representation of f if p,(F) = f(a1,...,an) + 1 for every
a = (a1,...,a,) € FY. Here p, denotes the boolean value of F at the tuple of
boolean values a where 1 = true and 0 = false.

The main effect of this definition is that boolean tuples at which F is satisfied
correspond uniquely to zeros of f in F5. The following two lemmas contain useful
building blocks for conversion strategies.

Lemma 2. Let f € Fo[zy,...,2,] be a polynomial, let F € M be a logical rep-
resentation of f, let y be a further indeterminate, and let Y be a further boolean
variable. Then G = (=F < Y) is a logical representation of the polynomial

g=1r+y.
Proof. Let a = (ai,...,an,b) € Fi™'. We distinguish two cases.

(1) If b =1 then g(a) = f(a) + 1 = o (F). Since ¢p(Y) = 1, we get pz(—~F &
Y) = Qpa(_‘F) = @a(F) +1

(2) If b = 0 then g(a) = f(a) = @a(F) + 1 and ¢p(Y) = 0 implies 5 (—F <
Y) = @a(F)'

In both cases we find ¢z(—F <= Y) = g(a) + 1, as claimed. O

The preceding lemma is the work horse for the standard conversion algorithm.
The next result extends it in a useful way.

Lemma 3. Let f € Fa[zq,...,2z,,y] be a polynomial of the form f =41 - bs+y
where 1 < s < n and {; € {x;, x; + 1} for i = 1,...,s. We define formulas
Li=X;ifl;=x; and L; = -X; if {; =x; + 1. Then

F=(YVL)A...A(RYVLIA(Y V=L V... V~L)

s a logical representation of f. Notice that F is in conjunctive normal form
(CNF) and has s + 1 clauses.

Proof. Let a = (ay,...,a,,b) € F3™t We will show . (F) = f(a) + 1 by in-
duction on s. In the case s = 1 we have f = x; + y + ¢ where ¢ € {0,1} and
F=(=YVL)A(YV~-Ly) where Ly = X; if c=0and Ly = -X; if c=1. The
claim ¢, (F) = f(a) + 1 follows easily with the help of a truth table.

Now we prove the inductive step, assuming that the claim has been shown
for s — 1 factors ¢;, i.e. for f’ = {1 ---£s_1 and the corresponding formula F’. To
begin with, we assume that ¢; = x4 and distinguish two sub-cases.

(1) If as = 0, we have pu(F) = o (Y VL) A...A(RY V Ls_1) AY = (YY)
and f(a) = b. This shows ¢, (F) = f(a) + 1.

(2) If as = 1, we have f(a) = f'(a). Using ¢,(Ls) = 1, we obtain
0a(F) = a(mYVL)A...AN(YVL_1)ANYV=L1V...V=aLs_1) = pa(F)
Hence the inductive hypothesis yields ¢, (F) = ¢ (F') = f'(a)+1 = f(a)+1.

In the case £, = x5 + 1, the proof proceeds in exactly the same way. a

Based on these lemmas, we can define three elementary strategies for con-
verting systems of (quadratic) polynomials over Fy into linear systems and a set
of CNF clauses.

Definition 4. Let f € Fa[z1,...,2,] be a polynomial.

(1) For each non-linear term t in the support of f, introduce a new indetermi-
nate y and a new boolean variable Y. Substitute y for t in f and append the
clauses corresponding to t+vy in Lemma 3 to the set of clauses. This is called
the standard strategy (SS).

(2) Assuming deg(f) = 2, try to find combinations z;x; + x; in the support of f.
Introduce a new indeterminate y and a new boolean variable Y. Replace
xz;xj+x; in f byy and append the clauses corresponding to x;(x; +1)+y in
Lemma 3 to the set of clauses. This is called the linear partner strategy
(LPS).

(8) Assuming deg(f) = 2, try to find combinations x;x; + x; + x; + 1 in the
support of f. Introduce a new indeterminate y and a new boolean variable Y .
Replace ;x5 + x; + x5 + 1 in f by y and append the clauses corresponding
to (z; + 1)(z; + 1) +y in Lemma 3 to the set of clauses. This is called the
double partner strategy (DPS).

Let compare the effect of these strategies in a simple example.

Example 5. Consider the polynomial f = x129 + z123 + 2wz + 21 + 22 + 1 in
Fylz1, 22, z3). The following table lists the number of additional logical variables
(#v) and clauses (#c) each strategy produces during the conversion of this
polynomial to a set of CNF clauses.

strategy SS LPS DPS

v 4 3 3
#c 25 17 13

Even better results can be achieved for quadratic and cubic terms by applying
the following two propositions.

Proposition 6 (Quadratic Partner Substitution).
Let f = zxj + zixp +y € Folzq, ..., 2y, Y] be a polynomial such that i, j, k are
pairwise distinct. Then

F= (X, VY)AN(X; VX VaY)A(RX; VX VoY) A
(X, VX, VX, VY)A (RX, VX, VX, VY)
1s a logical representation of f.

Proof. Using a truth table it is easy to check that the polynomial g = z;x; +
x;xp € Falxy,. .., z,] has the logical representation

G = (—\XZ \Y —\X]‘ V Xk) A (_‘Xz \/Xj \Y —\Xk)

Now Lemma 2 implies that the formula F' = =G < Y represents f, and after
applying some simplifying equivalences we get the claimed formula. a

It is straightforward to formulate a conversion strategy, called the quadratic
partner strategy (QPS), for polynomials of degree two based on this propo-
sition. Let us see how this strategy performs in the setting of Example 5.

Ezample 7. Let [= z129 + z123 + 2203 + 21 + 22 + 1 € Fafz1, 29, 23]. Then
QPS introduces 2 new logical variables and produces 16 additional clauses. Al-
though the number of clauses is higher than for DPS, the lower number of new
indeterminates is usually more important and provides superior timings.

For cubic terms, e.g. the ones appearing in the equations representing DES,
the following substitutions can be used.

Proposition 8 (Cubic Partner Substitution).
Let f = mzjoy + zixjx +y € Folzn, ..., xp,y], where i,5,k,1 are pairwise
distinct. Then

F=(X;VY)ANX; VYA (X VX VY)A(RXp VX VoY) A
(_‘Xi \/—|Xj V=X, VX \/Y) A\ (—‘Xl \/—‘Xj V=X, VX \/Y)

s a logical representation for f.

Proof. Using a truth table it is easy to check that the polynomial g = z;z;x) +
zizjr; € Folxq, ..., x,] has the logical representation

G = (ﬁXZ V ﬁXj V=XV Xl) A\ (ﬁXZ V ﬁXj V X,V ﬁXl)

Now Lemma 2 yields the representation F' = =G < Y for f, and straightforward
simplification produces the desired result. a

By inserting this substitution method into the conversion algorithm, we get
the cubic partner strategy (CPS). In Section 4 we shall see the savings in
clauses, indeterminates, and execution time one can achieve by applying this
strategy to DES. For cubic terms, it is also possible to pair them if they have
just one indeterminate in common. However, this strategy apparently does not
result in useful speed-ups and is omitted.

To end this section, we combine the choice of a substitution strategy with
the other steps of the conversion algorithm and spell out the version which we
implemented and used for the applications and timings in Section 4.

Proposition 9 (Boolean Polynomial System Conversion).
Let f1,..., fm € Falx1,...,2,], and let £ > 3 be the desired cutting number.
Consider the following sequence of instructions.

C1. Let G = 0. Perform the following steps C2-C5 fori=1,...,m.

C2. Repeat the following step C3 until no polynomial g can be found anymore.

C3. Find a subset of Supp(f;) which defines a polynomial g of the type required by
the chosen conversion strategy. Introduce a new indeterminate y;, replace f;
by fi — g +y;, and append g +1y; to G.

C4. Perform the following step C5 until # Supp(f;) < £. Then append f; to G.

C5. If # Supp(fi) > £ then introduce a new indeterminate y;, let g be the sum of
the first £ — 1 terms of f;, replace f; by fi — g +y;, and append g+y; to G.

C6. For each polynomial in G, compute a logical representation in CNF. Return
the set of all clauses K of all these logical representations.

This is an algorithm which computes (in polynomial time) a set of CNF clauses K
such that the boolean tuples satisfying K are in 1-1 correspondence with the so-
lutions of the polynomial system f1 =--- = f,, = 0.

Proof. Tt is clear that steps C2-C3 correspond to the linearisation part (1) of
the procedure given in the introduction, and that steps C4-C5 are an explicit
version of the cutting part (2) of that procedure. Moreover, step C6 is based
on Lemma 2, Lemma 3, Prop. 6, or Prop. 8 for the polynomials g + y; from
step C3, and on the standard XOR-CNF conversion for the linear polynomials
from steps C4-C5. The claim follows easily from these observations. ad

3 Converting Char 2 Polynomials to Boolean Polynomials

In the following we let e > 0, and we suppose that we are given polynomials
fiseooy fm € Faelzq, ..., xp]. Our goal is to use SAT-solvers to solve the system
filzy,...,xn) == fm(x1,...,2,) = 0 over the field Foe. For this purpose we
represent the field Fae in the form Foe 22 Fy[x]/(g) with an irreducible, unitary
polynomial g of degree e.

Notice that every element a of Fe has a unique representation a = a; +
asZ + az®@? + - -+ a2 with a; € {0,1}. Here Z denotes the residue class of x
in Fge. Let € be the homomorphism of Fy-algebras

e (Falz]/(g))[z1, ... 2] — (Fa2lz]/{9)[y1,-- -, Yen]
given by &; — y-1)et1 + Yii—1)et2 T+ F e - T fori=1,...,n.

Proposition 10 (Base Field Transformation).
In the above setting, consider the following sequence of instructions.

F1. Perform the following steps F2-F5 fori=1,...,m.

F2. For each term t € Supp(f;) compute a representative t" for e(t) using the fol-
lowing steps F3-F4. Recombine the results to get a representative for (f;).

F3. Apply the substitutions xj — Yj_1)e1 + Y(j—1)et2 " T+ + Yje - 71 and
get a polynomial t'.

F4. Compute t" = NRqug(t'). Here Q = {y2 —yr | k=1,...,ne} is the set
of field equations of Fy and the normal remainder NR is computed by the
Division Algorithm (see [13], Sect. 1.6).

F5. Write e(f;) = hit + hioT + -+ + hieT™" with hij € Falyr, ..., Yne)-

F6. Return the set H = {h;;}.

This is an algorithm which computes a set of polynomials H in Faly1,. .., Yen)
such that the Fo-rational common zeros of H correspond 1-1 to the Fye-rational
solutions of f1 =---= f, =0.

Proof. Using the isomorphism Fye 2 Fo[z]/(g) we represent the elements of Fae
uniquely as polynomials of degree < e — 1 in the indeterminate z. Let a =

(a1,...,an) € F3 be a solution of the system f; = --- = f,, = 0. For k =
1,...,n, we Write a = Cp1 + Cpo® + - - - + cre 2 with cxe € {0,1}.

By the definition of &, we see that (c11,. .., Cpe) is a common zero of the poly-
nomials {e(f1),...,&(fm)}. Since {1,Z,..., 771} is a basis of the Fa[y1, . . ., Yne)-
module Fa[Z][y1,. .., Yne), the tuple (c11,...,c1.) is actually a common zero of
all coefficient polynomials h;; of each e(f;).

In the same way it follows that, conversely, every common zero (11, . .., Cpe) €
F5e of H yields a solution (ay,...,ay) of the given polynomial system over Fae
via ai = cr1 + CpoZ + - - - + CreTE L. O

In the computations below we used the representations Fi5 = Fa[z]/(z* +
x + 1) for Small Scale AES and Fas = Fa[z]/(2® + 2* + 23 + 2 + 1) for the full
AES. They correspond to the specifications in [6] and [9], respectively.

4 Applications and Timings

In this section we report on some experiments with the new conversion strategies
and compare them to the standard strategy. Moreover, we compare some of the
timings we obtained to the straightforward Grobmner basis approach. For the
cryptosystems under consideration, we used the ApCoCoA implementations by
J. Limbeck (see [15]).

As in [4], the output of the conversion algorithms are files in the DIMACS
format which is used by most SAT-solvers. The only exception is the system
CryptoMiniSat which uses a certain XOR-CNF file format (see [18]). The con-
version algorithm used the cutting number 4 which turned out to be usually
the best. The timings were obtained by running MiniSat 2.1 (see [10]) resp. the
XOR extension of CryptoMiniSat 2.6 (see [17]) on a 2.66 GHz Quadcore Xeon
PC with 8 GB RAM. The timings for the conversion of the polynomial system
to a set of CNF clauses were ignored, since the conversion was not implemented
efficiently and should be seen as a preprocessing step.

All experiments followed the same procedure. We randomly produced three
keys and plaintext - ciphertext pairs. For each of them, we randomly permuted
the clauses produced by the conversion algorithms and performed > 20 SAT
solver runs. The stated timings are therefore the averages of > 60 runs each.
The reason for the observed variability of the individual timings is that SAT
solvers are randomized algorithms which rely heavily on heuristical methods.

4.1 The Courtois Toy Cipher (CTC)

This artificial cryptosystem was described in [7]. Its complexity is configurable.
We denote the system having n encryption rounds and b parallel S-boxes by

CTC(n,b). In the following table we collect the savings in logical variables (#v)
and clauses (#c) we obtain by using different conversion strategies. The S-boxes
were modelled using the full set of 14 equations each.

system ||(#vss, #css)|(#vrps, #cops)|(#vpps, #cpps)|(#Fvgps, #cops)
CTCB3)| (361, 2250) | (352, 1908) | (334, 1796) (352, 2246)
CTC(4,4)|[(617, 4017) | (601, 3409) | (569, 3153) (617, 3953)
CTC(5,5)[(956, 6266) | (931, 5316) | (881, 4916) (956, 6116)
CTC(6,6)] (1369, 8989) | (1333, 7621) | (1261, 7045) | (1369, 8845)

Thus the LPS and QPS conversions do not appear to provide substantial
improvements over the standard strategy, but DPS reduces the input for the
SAT-solver by about 8% variables and 22% clauses. Let us see whether this
results in a meaningful speed-up. To get significant execution times, we consider
the system CTC(6,6). We try MiniSat (time ¢ in seconds) and the XOR, version
of CryptoMiniSat (time ¢ in seconds).

strategy H#v # c tm te
SS 937 5065 19.2 20.3
LPS 865 4417 15.2 19.9
DPS 793 3841 15.4 20.0
QPS 937 5065 19.1 15.8

LPS and DPS both resulted in a 20% speed-up of MiniSat, whereas QPS
there was a 20% speed-up of CryptoMiniSat. By combining these methods with
other optimizations, significantly larger CTC examples can be solved.

4.2 The Data Encryption Standard (DES)

Next we examine the application of SAT-solvers to DES. By DES-n we denote
the system of equations resulting from an algebraic attack at n rounds of DES.
To model the S-boxes, we used optimized sets of 10 or 11 equations that we com-
puted via the technique explained in [12]. Since the S-box equations are mostly
composed of terms of degree 3, we compare SS conversion to CPS conversion.
In the following table we provide the number of polynomial indeterminates
(#4), the number of polynomial equations (#e), the number of logical variables
(#v) and clauses (#c¢) resulting from the SS and the CPS conversion, together
with some timings of MiniSat (tar,55 and tar,cps), as well as the XOR version
of CryptoMiniSat (t¢). (The timings are in seconds, except where indicated.)

system || #i | #e | (Fvss, #css) | (Fveps, #cops) | tu,ss | to | tucps
DES-3 ||400|550 | (5114, 34075) (4583, 30175) 0.66 |0.23| 0.46
DES-4 [|512|712 (6797, 45428) (60897 40228) 420 | 86 280
DES-5 |/624|874 | (8480, 56775) (6205, 71361) 27h |38h| 9.6h

From this table we see that, for DES-3 and DES-4, the CPS reduces the
number of logical variables and clauses by about 11% each, resulting in a 33%
speed-up of MiniSat. In the case of DES-5 we achieved a 27% reduction in the
number of logical variables and an 65% speed-up.

4.3 Small Scale AES and Full AES

Let us briefly recall the arguments of possible configurations of the Small Scale
AES cryptosystem presented in [6]. By AES(n,r,c,e) we denote the system such
that

n € {1,...,10} is the number of encryption rounds,

r € {1,2,4} is the number of rows in the rectangular input arrangement,
— ¢ €{1,2,4} is the number of columns in the rectangular input arrangement,
— e € {4,8} is the bit size of a word.

The word size e indicates the field Foe over which the equations are defined,
i.e. e = 4 corresponds to Fi14 and e = 8 to Fa56. By choosing the parameters
r =4, c=4 and w = 8 one gets a block size of 4 - 4 - 8 = 128 bits, and Small
Scale AES becomes AES.

Let us begin with a table which shows the savings in logical variables and
clauses one can achieve by using the QPS conversion method instead of the
standard strategy. Notice that AES yields linear polynomials or homogeneous
polynomials of degree 2. Thus QPS is the only conversion strategy suitable for
minimalizing the number of logical variables and clauses.

In the following table we list the number of indeterminates (#:) and equations
(#te) of the original polynomial system, as well as the number of logical variables
and clauses of its CNF conversion using the standard strategy (#vss, #css) and
the QPS conversion (#vgps, #coprs)-

AES(H,I,C,W) #Z #e (#Ugs, #Css) (#UQPS’7 #CQPS)
AES(9,1,1,4) || 592 | 1184 | (2905, 17769) (2617, 16905)
AES(4,2,1,4) || 544 | 1088 | (3134, 20123) (2878, 19355)
AES(2,2,2,4) [512 [1024 | (2663, 17611) | (2471, 17035)
AES(3,1,1,8) || 832 | 1664 | (11970, 83509) | (11010, 78469)
AES(1,2,2,8) [1152]2304 | (14125, 101249) | (13165, 96209)
AES(2,2,2,8) || 2048 | 4096 | (32530, 236669) | (30610, 226589)
AES(1,4,4,8) {4352 | 8704 | (52697,383849) | (49497, 367049)

Although the QPS conversion reduces the logical indeterminates in the CNF
output by only about 6-8% and the clauses by an even meagerer 4-5%, we will
see that the speed-up for MiniSat can be substantial, e.g. about 26% for one
round of full AES.

Our last table provides some timings for MiniSat with respect to the SS
conversion set of clauses (¢ar,s5), with respect to the QPS conversion set of
clauses (ta,gps), and of the XOR version of CryptoMiniSat (¢¢).

AES(H,I‘,C,W) tM,SS tc tJM,QPS
AES(9,1,1,4)|[0.07 [0.02] 0.04
AES(4,2,1,4) | 0.89 [0.09] 0.28
AES(2,2,2,4) || 0.89 [0.22] 0.72
AES(3,1,1,8) || 56.3 [44.9] 423
AES(1,2,28)]| 86.4 | 64 | 61.3

()

()

AES(2,2,28)|[9h |5.1h| 5.3h
AES(1,4,4,8) | 8824 | 3h | 6551

Thus the QPS conversion usually yields a sizeable speed-up. Notice that also
the XOR version of CryptoMiniSat provides competitive timings, in particu-
lar when applied to the clauses obtained from the CPS conversion. As men-
tioned previously, the timings also depend on the chosen plaintext-ciphertext
pairs. Above we give average timings. In extreme cases the gain resulting from
our strategies can be striking. For instance, for one plaintext-ciphertext pair in
AES(3,1,1,8) we measured 222 sec. for the SS strategy and 0.86 sec. for the QPS
strategy.

When we compare these timings to the Grobner basis approach in [15], we
see that SAT-solvers are vastly superior. Of the preceding 7 examples, only the
first two finish without exceeding the 8 GB RAM limit. They take 596 sec. and
5381 sec. respectively, compared to fractions of a second for the SAT-solvers.

Finally, we note that the timings seem to depend on the cutting number in
a rather subtle and unpredictable way. For instance, the best timing for one
full round of AES was obtained by using the QPS conversion and a cutting
number of 6. In this case, MiniSat was able to solve that huge set of clauses
in 716 seconds, i.e. in less than 12 minutes. Clearly, the use of SAT-solvers in
cryptanalysis opens up a wealth of new possibilities.

Acknowledgements. The authors are indebted to Jan Limbeck for the possibil-
ity of using his implementations of various cryptosystems in ApCoCoA (see [15])
and for useful advice. They also thank Stefan Schuster for valuable discussions
and help with the implementations underlying Sect. 4.

References

1. ApCoCoA team: ApCoCoA: Applied Computations in Commutative Algebra.
Available at http://www.apcocoa.org

2. Bard, G.: On the rapid solution of systems of polynomial equations over low-

degree extension fields of GF(2) via SAT-solvers. In: 8th Central European Conf.

on Cryptography (2008)

Bard, G.: Algebraic Cryptanalysis. Springer Verlag (2009)

4. Bard, G., Courtois, N., Jefferson, C.: Efficient methods for conversion and solution
of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-
solvers. Cryptology ePrint Archive 2007(24) (2007)

5. Chen, B.: Strategies on algebraic attacks using SAT solvers. In: 9th Int. Conf. for
Young Computer Scientists. IEEE Press (2008)

o

10.
11.

12.

13.

14.

15.

16.

17.

18.

Cid, C., Murphy, S., Robshaw, M.: Small scale variants of the AES. In: Fast Soft-
ware Encryption: 12th International Workshop. pp. 145-162. Springer Verlag, Hei-
delberg (2005)

Courtois, N.: How fast can be algebraic attacks on block ciphers. In: Bi-
ham, E., Handschuh, H., Lucks, S., Rijmen, V. (eds.) Symmetric Cryp-
tography — Dagstuhl 2007. Dagstuhl Sem. Proc., vol. 7021. Available at
http://drops.dagstuhl.de/opus/volltexte/2007/1013

. Courtois, N., Bard, G.: Algebraic cryptanalysis of the data encryption standard.

In: Galbraith, S. (ed.) IMA International Conference on Cryptography and Coding
Theory. LNCS, vol. 4887, pp. 152-169. Springer Verlag (2007)

Daemen, J., Rijmen, V.: The Design of Rijndael. AES — The Advanced Encryption
Standard. Springer Verlag, Berlin (2002)

Eeén, N., Sorensen, N.: Minisat. Available at http://minisat.se

Jovanovic, P.: Losen polynomieller Gleichungssysteme iiber F2 mit Hilfe von SAT-
Solvern. Universitat Passau (2010)

Kreuzer, M.: Algebraic attacks galore! Groups - Complexity - Cryptology 1, 231-
259 (2009)

Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer Ver-
lag, Heidelberg (2000)

Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 2. Springer Ver-
lag, Heidelberg (2005)

Limbeck, J.: Implementation und Optimierung algebraischer Angriffe. Diploma
thesis, Universitit Passau (2008)

Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. J. Automated
Reasoning 24, 165-203 (2000)

Soos, M., Nohl, K., Castelluccia, C.: CryptoMiniSat. Available at
http://planete.inrialpes.fr/~soos/

Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing —
SAT 2009. LNCS, vol. 5584. Springer Verlag (2009)

